• Title/Summary/Keyword: 배액률

Search Result 10, Processing Time 0.031 seconds

Effect of Zero Drainage Using Drainage Zero Sensor on Root Zone Environment, Growth and Yield in Tomato Rockwool Culture (토마토 수경재배 시 배액제로 센서를 이용한 배액제로화가 근권환경, 생육 및 수량에 미치는 영향)

  • Hwang, Yeon-Hyeon;An, Chul-Geon;Chang, Young-Ho;Yoon, Hae-Suk;An, Jae-Uk;Shon, Gil-Man;Rho, Chi-Woong;Jeong, Byoung-Ryong
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.398-403
    • /
    • 2012
  • This study was carried out to investigate the effect of irrigation method adopted for reducing nutrient solution drainage on the root zone environment, growth and yield of a tomato crop grown in a rockwool medium. The irrigation control methods used were large quantity irrigation at a long interval controlled by only an integrated solar radiation sensor (standard), medium quantity irrigation at a medium interval (zero drainage 1), and small quantity irrigation at a short interval (zero drainage 2) controlled by both an integrated solar radiation sensor and a zero drainage sensor. The amount of the nutrient solution supplied and the drain percentage per plant of the standard, zero drainage 1, and zero drainage 2 were 1.4, 0.9 and 0.8 L, and 23.8, 8.6 and 3.7%, respectively. The average, minimum, and maximum water contents and EC of the standard, zero drainage 1, and zero drainage 2 were 64.5~88% and $1.5{\sim}3.5dS{\cdot}m^{-2}$, 40.3~76.0% and $2.5{\sim}4.0dS{\cdot}m^{-2}$, and 56.3~69.0% and $2.7{\sim}3.7dS{\cdot}m^{-2}$, respectively. There was no difference in leaf width, number of leaves, and stem diameter among the treatments. However, plant height and leaf length decreased in the zero drainage 1 and 2 treatments as compared to the standard. The fruit marketable yield per 10a in the zero drainage 1 and 2 treatments was about 93 and 88%, respectively, of that in the standard treatment.

Growth and Quality of Two Melon Cultivars in Hydroponics Affected by Mixing Ratio of Coir Substrate and Different Irrigation Amount on Spring Season (멜론 봄 재배 시 코이어 배지경에서 배지 혼합 비율과 급액량에 따른 생육 및 품질)

  • Choi, Su hyun;Lim, Mi Yeong;Choi, Gyeong Lee;Kim, So Hui;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.376-387
    • /
    • 2019
  • Melons are mostly grown in soil, but it is susceptible to damage due to injury by continuous cropping such as Fusarium wilt and root rot. Hydroponic cultivation system can overcome the disadvantages of soil cultivation with precise nutrition management and a clean environment. When using the coir substrate, the most environmentally friendly organic substrate used for hydroponics, it is analyzed how the growth and fruit quality of the melon depends on the ratio of chips and dust and the amount of irrigation. The purpose of this study was to provide the basic data of melon hydroponics when cultivated in spring. The two types of the coir substrates used in the experiments were chip and dust ratios of 3 :7 and 5 : 5 respectively. The substrate with high dust ratios had excellent physical characteristics, such as container capacity and total porosity, and the drainage EC level showed a high value of $3.0-6.8dS{\cdot}m^{-1}$. When the amount of irrigation is provided based on the drainage rate, the group provided the nutrient solution on the basis of 10% drainage supplied 91 L per plant, which was reduced by about 30% compared to the group with the highest water supply. In addition, the total drainage showed less than 10 L per plant with a minimum water supply and was reduced by 30 - 70% in substrate with a high dust rates. In substrate with high water supply and high dust ratio, leaf growth and fruit enlargement were good, and the soluble solids content varies greatly from cultivar to cultivar. If you provided the amount of irrigation based on 10% drainage rate, the fruit weight will be decreased, but the amount of irrigation can be reduced. Therefore, it is considered that managing the water & nutrient properly taking into account the characteristics of coir substrate and cultivar can produce melon of uniform quality using hydroponics.

Performance of Seedling Grafts of Tomato as Influenced by Root Medium Formulations and Leaching Fractions in Irrigation or Fertigation (혼합상토 조성과 관수 또는 관비시 배액률이 토마토 접목묘 생장에 미치는 영향)

  • Choi, Jong Myung
    • Journal of Bio-Environment Control
    • /
    • v.23 no.3
    • /
    • pp.235-243
    • /
    • 2014
  • This research was conducted to investigate the influence of leaching fractions (LF) in each irrigation or fertigation on plant growth and changes in chemical properties of root media during the production of seedling grafts of tomato. Two root media containing Sphagnum peat moss plus vermiculite (5:5, v/v, PV) and coir dust plus vermiculite (5:5, v/v, CV) were formulated and pre-planting fertilizers were incorporated during formulation. Then, each medium was packed into 50 cell (volume 33 cc) and 105 cell (volume 18 cc) trays and the rootstock (cv. J3B Strong) and scion (cv. Sunmyung) were grown, respectively. The seedlings were grafted at 31 days after sowing and then the cut seedling grafts (Sunmyung scion/J3B Strong rootstock) were planted into 50 cell plug trays containing each of the two root media. After induction of the graft union and new adventitious roots for 7 days, the seedling grafts were fed with fertilizer solution once a week containing 4 different N concentrations (0, 50, 100, $200mg{\cdot}L^{-1}$). When determined after 31 days from seed sowing, the highest fresh weights of the root stock seedlings were obtained with 0.75 LF in PV (8.96g/seedling) and CV (7.11g/seedling) mixes. The EC of the both mixes were 0.93 and $1.09dS{\cdot}m^{-1}$, respectively. The fresh weights of the scion seedlings 31 days after seed sowing were 4.29g with 0.50 LF in the PV and 3.13g with 0.50 LF in the CV. The root medium ECs of the two treatments were 0.76 and $1.34dS{\cdot}m^{-1}$, respectively. Fresh weights of the seedling grafts grown for 31 days were greatly influenced by post-planting fertilizer concentrations. The heavier plants were obtained in $100mg{\cdot}L^{-1}$ N treatment than any other treatments in same mixes. The substrate ECs in these two treatments were 0.98 and $1.93dS{\cdot}m^{-1}$, respectively, indicating that the desirable range of soluble salts in soil extracts is higher in the CV mix than the PV mix. Results of this study suggest that optimum EC range is different in each medium and LF need to be adjusted differently for each root medium to produce high quality seedling grafts of tomato.

Irrigation Control for Improving Irrigation Efficiency in Coir Substrate Hydroponic System (코이어 배지 수경재배에서 관수효율 향상을 위한 급액 제어)

  • Yoo, Hyung-Joo;Choi, Eun-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.153-160
    • /
    • 2015
  • The objectives of this study were to determine optimal length of off-time between irrigation cycles to improve irrigation efficiency using a frequency domain reflectometry (FDR) sensor-automated irrigation (FAI) system for tomato (Solanum lycopersicum L.) cultivation aimed at minimizing effluent from coir substrate hydroponics. For treatments, the 5-minute off-time length between 3-minute run-times (defined as 3R5F), 10-minute off-time length between 3-minute run-times (defined as 3R10F), or 15-minute off-time length between 5-minute run-times (defined as 5R15F) were set. During the 3-minute or 5-minute run-time, a 60mL or 80mL of nutrient solution was irrigated to each plant, respectively. Until 62 days after transplant (DAT) during the autumn to winter cultivation, daily irrigation volume was in the order of 3R5F (858mL) > 5R15F (409mL) > 3R10F (306mL) treatment, and daily drainage ratio was in the order of 3R5F (44%) > 5R15F (23%) > 3R10F (14%). Between 63 and 102 DAT, daily irrigated volume was in the order of 5R15F (888mL) > 3R5F (695mL) > 3R10F (524mL) with the highest drainage ratio, 19% (${\pm}2.6$), at the 5R15F treatment. During the spring to summer cultivation, daily irrigation volume and drainage ratio per plant was higher in the 3R5F treatment than that of the 3R10F treatment. For both cultivations, a higher water use efficiency (WUE) was observed under the 3R10F treatment. Integrated all the data suggest that the optimal off-time length is 10 minutes.

Effects of Non-drainage Hydroponic Culture on Growth, Yield, Quality and Root Environments of Muskmelon (Cucumis melo L.) (멜론 수경재배 시 배액제로화가 근권환경 및 수량에 미치는 영향)

  • Chang, Young Ho;Hwang, Yeon Hyeon;An, Chul Geon;Yoon, Hae Suk;An, Jae Uk;Lim, Chae Shin;Shon, Gil Man
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.348-353
    • /
    • 2012
  • This study was conducted to figure out the possibility of non-drainage in muskmelon (Cucumis melo L.) hydroponics culture. Plants were grown under 3 different levels of drainage, standard (20~40%, SD), minimum (5~10%, MD), and non-drainage (ND). Throughout cultivation periods, constant water content and electrolyte conductivity changes in root zone were observed in SD in the range of 60~70% and $1.5{\sim}2.5dS{\cdot}m^{-1}$, respectively. ND treatment caused the fluctuation in water content and electrolyte conductivity of root zone and its change ranges were 30~50% in water content and $2{\sim}6dS{\cdot}m^{-1}$ in electrolyte conductivity, but ND treatment did not decrease fruit quality. Even if fruit fresh weight was slightly lower in ND with 1,863 g, than in SD with 1,990 g, the fruit weight in ND meets standard market size, 1,800~2,000 g. Higher soluble solids content was observed in fruit in ND than in SD and MD. Total amount of drainage per plant was 27,718, 15,769 and 2,346 mL in SD, MD and ND, respectively. SD showed $83.2m^3$ drainage, 34.5% drainage of irrigation amount whereas required total irrigation amount in ND was very low with $7m^3$.

Comparison in Water Consumption, Plant and Fruit Growth of Different Europe Eggplant Cultivars in Coir Substrate Hydroponics under High Temperature Conditions (고온조건하에서 코이어 배지에서 유럽형 가지 품종별 수분소비량, 식물체 생육 및 과실 특성 비교)

  • Seoa Yoon;Jeongman Kim;Eunyoung Choi;Kiyoung Choi;Kyunglee Choi;Kijeong Nam;Seokkwi Oh;Jonghyang Bae;Yongbeom Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.139-147
    • /
    • 2023
  • This study aims to select eggplant cultivars adaptive to the hot temperature period greenhouse climate by water consumption, and growth performance of plants and fruits of different European eggplant cultivars, including 'Bartok (BA)', 'Bowie (BO)', 'Black Pearl (BP)', 'Ishbilia (I)', 'Mabel (M)', 'Vestale (VE)' and 'Velia (VL)', in substrate hydroponic cultivation under hot and humid greenhouse conditions. On the 118 DAT, the leaf number and stem dry weight were highest in 'VL', followed by 'M', and there was no significant difference in leaf dry weight among cultivars. The marketable fruit number per plant was 16.4 for 'M', which was higher than other cultivars, and 'VE' and 'VL' were 8.5 and 8.8, respectively. The weight per fruit was low for 'M' at 136 g, and the highest in 'VE' and 'VL' at 332 and 281 g, respectively. There was no significant difference in fruit production per plant. In this study, 'M', which has high water use efficiency and a large number of fruits, and 'VL', which required less quantity to water consumption for producing 200 g of fruit and had a high product weight, will have excellent adaptability in the UAE greenhouse condition.

Comparisons in Volumes of Irrigation and Drainage, Plant Growth and Fruit Yield under FDR Sensor-, Integrated Solar Radiation-, and Timer-Automated Irrigation Systems for Production of Tomato in a Coir Substrate Hydroponic System (토마토 코이어 수경재배에서 FDR센서, 적산일사량센서 및 타이머 급액방식에 따른 급배액량, 생육 및 과실수량 비교)

  • Choi, Eun-Young;Kim, Hee-Yong;Choi, Ki-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.25 no.1
    • /
    • pp.63-70
    • /
    • 2016
  • Water drainage from the open hydroponics often causes significant environmental pollution due to agrochemicals and loss of water and nutrients. The objectives of this study were to show the potential application of an irrigation schedule based on threshold values of volumetric substrate water content for tomato (Solanum lycopersicum L. 'Samsamgu') cultivation in a commercial hydroponic farm during spring to summer cultivation. This study was performed for minimizing effluent from coir substrate hydroponics using a frequency domain reflectometry (FDR) sensor-automated irrigation, as compared with an integrated solar-radiation (IR) and conventional timer-irrigation (TIMER) after transplanting. In results, no significant difference in daily irrigation volume was found among the treatments until 88 days after transplant (DAT). However, during the 88 to 107 DAT, the daily irrigation volume was in the order of IR (2125 mL) > TIMER (2063 mL) > FDR (1983 mL), and during the 108 to 120 DAT, it was in the order of IR (2000 mL) > TIMER (1664 mL) > FDR (1500 mL). The lowest drainage volume was observed in the FDR treatment with the order of IR (12~19%) > TIMER (4~12%) > FDR (0~7%) during the entire growing period. A lower irrigation volume in the FDR treatment after 88 DAT may be due to the sensor's detecting capacity for less water absorption by plant after completing fruit maturity with apical pruning and removal of lower leaves, while a higher irrigation volume in the IR treatment may be due to gradual increase in integrated solar-radiation amount as closer to summer season. There was no significant difference in plant growth and fruit yield among the treatments; however, a 11% and 18% of higher soluble sugar content was observed in the FDR than that of TIMER and IR treatment. respectively.

Irrigation Method of Nutrient Solution Affect Growth and Yield of Paprika 'Veyron' Grown in Rockwool and Phenolic Foam Slabs (Rockwool과 Phenolic Foam 배지에서 양액공급 방법이 프리카(Capsicum annuum) 'Veron'의 생육과 수량에 미치는 영향)

  • Kim, Kwang Soo;Lee, Yong Beum;Hwang, Seung Jae;Jeong, Byoung Ryong;An, Chul Geon
    • Horticultural Science & Technology
    • /
    • v.31 no.2
    • /
    • pp.179-185
    • /
    • 2013
  • This study was carried out to find a reasonable irrigation method of a nutrient solution for the phenolic foam slab (foam LC) used in a trial experiment to substitute the rockwool slab in the production of paprika (Capsicum annuum 'Veyron'). 100, 90, and 80 mL of a nutrient solution was supplied per plant each time when the accumulated radiation reached to 100, $90J{\cdot}cm^{-2}$, and they were named as the 100-100, 90-90, and 90-80 treatment, respectively. The drain percentage per plant of the 100-100 treatment was high by 33.8% in rockwool and 36.7% in foam LC (Lettuce Cube) and that of 90-80 treatment was low by 30.4% and 33.7%. The water content and EC of the rockwool slab were maintained in the range of 63.6-68.9% and $4.4-5.1mS{\cdot}cm^{-1}$, while those of the foam LC slab were in the range of 52.9-58.8% and $5.5-6.5mS{\cdot}cm^{-1}$. The plant height and leaf size of the 100-100 and 90-90 treatments increased in a similar manner, while those of the 90-80 treatment decreased and those of the rockwool were greater than those of the foam LC. The fruit size and weight of the 100-100 and 90-90 treatments were similarly bigger and heavier than those of the 90-80 treatment. The number of fruits harvested per plant was the greatest in the 90-80 treatment with 8 and 8.3 fruits in the rockwool and foam LC. The number of marketable fruits in the rockwool and foam LC was the greatest with 18.1 and 18.2, respectively, in the 90-90 treatment, while that in the 90-80 treatment was 17.2 and 16.8, respectively. The number of unmarketable fruits of the 90-80 treatment was the greatest (1.7-1.8 fruits per plant) in both the rockwool and foam LC, and most of them were small sized or blossom end rot fruits. The yield of the 90-90 treatment was the greatest among the irrigation.

Growth, Quality and Irrigation Requirements of Melon Cultivars in Hydroponic Cultivation Using Coir Substrate (코이어 배지를 이용한 멜론 수경재배 시 품종별 생육, 품질 및 급액 요구량)

  • Lim, Mi Young;Roh, Mi Young;Jeong, Ho Jeong;Choi, Gyeong Lee;Kim, So Hui;Choi, Su Hyun;Lee, Choung Keun
    • Journal of Bio-Environment Control
    • /
    • v.30 no.3
    • /
    • pp.188-195
    • /
    • 2021
  • This study was conducted to investigate the growth and quality characteristics of melon (Cucumis melo L.) cultivars and the irrigation requirements for cultivars. In our previous study in 2019, twelve melon cultivars including 'Dalgona' were examined for their cultivar characteristics under the same irrigation condition for all cultivars, and sorted into several groups based on different growth condition; for the internode length (from 0 to 20th node), leaf area, and fruit weight, 'Kingstar' belonged to the largest group, 'Worldstar' the middle group, and 'Dalgona' the smallest group. After analyzing the results of the previous experiment, 'Dalgona', 'Worldstar', 'Kingstar', and 'Rubyball' were selected as test cultivars for the growth group in 2020, and irrigated according to different irrigation levels for each cultivar. The control of the irrigation volume for each melon cultivar by monitoring the drainage rate during the cultivation periods showed that all four cultivars required a similar amount of irrigation in the 'early growth' stage where crops grew at about the same rate. From 'flowering time', however, the change in irrigation requirements showed a similar tendency for 'Worldstar' and 'Kingstar' and for 'Rubyball' and 'Dalgona' respectively. A sudden change in each irrigation volume was observed from the fruit set; 'Dalgona' began first to decline and 'Rubyball' was second, followed by 'Worldstar' and 'Kingstar'. In conclusion, the irrigation volume was the largest in 'Kingstar', followed by 'Worldstar', 'Rubyball', and 'Dalgona' in the same order as the growing amount of plant length, leaf area, and fruit weight. Therefore, it is necessary to control exactly the irrigation volume by reflecting the unique growth characteristics of each cultivar for the production of high-quality fruit in melon hydroponics, and especially to use great care when different cultivars are cultivated together.

Effect of Difference in Irrigation Amount on Growth and Yield of Tomato Plant in Long-term Cultivation of Hydroponics (장기 수경재배에서 급액량의 차이가 토마토 생육과 수량 특성에 미치는 영향)

  • Choi, Gyeong Lee;Lim, Mi Young;Kim, So Hui;Rho, Mi Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.444-451
    • /
    • 2022
  • Recently, long-term cultivation is becoming more common with the increase in tomato hydroponics. In hydroponics, it is very important to supply an appropriate nutrient solution considering the nutrient and moisture requirements of crops, in terms of productivity, resource use, and environmental conservation. Since seasonal environmental changes appear severely in long-term cultivation, it is so critical to manage irrigation control considering these changes. Therefore, this study was carried out to investigate the effect of irrigation volume on growth and yield in tomato long-term cultivation using coir substrate. The irrigation volume was adjusted at 4 levels (high, medium high, medium low and low) by different irrigation frequency. Irrigation scheduling (frequency) was controlled based on solar radiation which measured by radiation sensor installed outside the greenhouse and performed whenever accumulated solar radiation energy reached set value. Set value of integrated solar radiation was changed by the growing season. The results revealed that the higher irrigation volume caused the higher drainage rate, which could prevent the EC of drainage from rising excessively. As the cultivation period elapsed, the EC of the drainage increased. And the lower irrigation volume supplied, the more the increase in EC of the drainage. Plant length was shorter in the low irrigation volume treatment compared to the other treatments. But irrigation volume did not affect the number of nodes and fruit clusters. The number of fruit settings was not significantly affected by the irrigation volume in general, but high irrigation volume significantly decreased fruit setting and yield of the 12-15th cluster developed during low temperature period. Blossom-end rot occurred early with a high incidence rate in the low irrigation volume treatment group. The highest weight fruits was obtained from the high irrigation treatment group, while the medium high treatment group had the highest total yield. As a result of the experiment, it could be confirmed the effect of irrigation amount on the nutrient and moisture stabilization in the root zone and yield, in addition to the importance of proper irrigation control when cultivating tomato plants hydroponically using coir substrate. Therefore, it is necessary to continue the research on this topic, as it is judged that the precise irrigation control algorithm based on root zone-information applied to the integrated environmental control system, will contribute to the improvement of crop productivity as well as the development of hydroponics control techniques.