• Title/Summary/Keyword: 배아 줄기 세포

Search Result 124, Processing Time 0.023 seconds

Different Potential of Hematopoietic Differentiation in Two Distinct Mouse Embryonic Stem Cells (두 개의 다른 마우스 배아줄기세포의 차별적인 조혈세포 분화능)

  • Kim, Jin-Sook;Kang, Ho-Bum;Song, Jee-Yeon;Oh, Goo-Taeg;Nam, Ki-Hoan;Lee, Young-Hee
    • Development and Reproduction
    • /
    • v.9 no.2
    • /
    • pp.105-114
    • /
    • 2005
  • Embryonic stem(ES) cells have tremendous potential as a cell source for cell-based therapies. Realization of that potential will depend on our ability to understand and manipulate the factors that influence cell fate decision and to develop methods for getting enough cell numbers for clinical applications. Hematopoiesis has been widely studied, and hematopoietic differentiation from ES cells is a good model to study lineage commitment. In this study, we investigated stemness and compared the efficiency of hematopoietic differentiation using two different mouse embryonic stem cell lines TC-1 and B6-1. Although the two cell lines showed known stem cell properties with minor differences, the embryoid body formation efficiency in methylcellulose was much higher in TC-1 than B6-1. When measured potentials of hematopoietic differentiation using functional(colony-forming cell) and phenotypic(specific marker expression) assays, we found that TC-1 can differentiate into hematopoietic cells in methylcellulose culture but B6-1 cannot. These results imply that we can improve the efficiency of hematopoietic cell differentiation by selection of proper cell lines and this may be also applied in the differentiation of human embryonic stem cells.

  • PDF

Establishment of Embryonic Stem Cell Line from Isolated Blastomeres from Mouse Preimplantation Embryos (생쥐 초기 배아에서 분리한 할구를 이용한 배아줄기세포주 확립)

  • Lim, Chun Kyu;Sung, Ji Hye;Choi, Hye Won;Cho, Jae Won;Shin, Mi Ra;Jun, Jin Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.1
    • /
    • pp.25-33
    • /
    • 2006
  • Objective: The aim of this study was to investigate whether embryonic stem (ES) cells can be established from isolated blastomeres of mouse embryos. Methods: Blastomeres were separated from mouse (C57Bl/6J) 2- or 4-cell embryos. Isolated blastomeres or whole 4-cell embryos were co-cultured with mitosis-arrested STO feeder cells in DMEM supplemented with recombinant murine leukemia inhibitory factor and ES-qualified fetal bovine serum. After the tentative ES cell lines were maintained from isolated blastomeres or whole embryos, some of them were frozen and the others were sub-cultured continually. Characteristics of tentative ES cell lines as were evaluated for specific genes expressions with immunocytochemistry and RT-PCR. Results: One ES cell line (3.0%) was established from isolated blastomere of 2-cell embryo and one cell line (4.0%) from isolated two blastomeres of 4-cell embryo. And five cell lines (16.7%) were established from whole 4-cell embryos. Both cell lines from isolated blastomere and whole embryo expressed mouse ES cell specific markers such as SSEA-1, Oct-4 and alkaline phosphatase. Marker genes of three germ layers were expressed from embryoid bodies of both cell lines. Conclusion: This study suggests that mouse ES cells could be established from isolated blastomeres, although the efficiency is lower than whole embryos. This animal model could be applied to establishment of autologous human ES cells from biopsied blastomeres of preimplantation embryos in human IVF-ET program.

Expectation Dynamics of Embryonic Stem Cell Research : Focusing on the establishment process of Stem Cell Research Center (배아줄기세포를 둘러싼 기대 역학 : 세포응용연구사업단 설립과정을 중심으로)

  • Shon, Hyang-Koo
    • Journal of Science and Technology Studies
    • /
    • v.8 no.1
    • /
    • pp.55-95
    • /
    • 2008
  • This research was performed with the aim of analyzing the 'expectation dynamics' of embryonic stem cell research which was revealed throughout the establishment process of Stem Cell Research Center from 2000 to 2002. Expectation dynamics is a chained process: expectation construction - raising fund - performing research. Normally, researchers are considerably circumspect and politically neutral in assessing the result of research. However, some researchers are very involved in building the expectation dynamics by developing an overestimated impact of the result, which can be understood as a kind of strategy for solving the financial problem and defending the criticism in terms of bioethics. Nowadays Biotechnology R&D costs a big budget and requires large site human resources, so building the expectation dynamics is a decisive element for a successful R&D performance, which makes the strategy-development in the political context much more important. By analyzing the actors-network of embryonic stem cell research in term of 'expectation dynamics', we can clarify the identify of embryonic stem cell researchers and draw a conclusion which is very helpful for decision makers and the public to make a decision related with embryonic stem cells.

  • PDF

성체줄기세포 연구이 대규모 임상 성공의 의미 및 활용가치

  • Na, Hyeong-Gyun
    • Health and Mission
    • /
    • s.4
    • /
    • pp.26-38
    • /
    • 2005
  • 최근 성체줄기세포도 배아줄기세포처럼 자신이 속한 조직이나 장기가 아닌 다른 배엽의 줄기세포로 부화할 수 있는 교차분화 능력이 알려지면서 여러 질환에서 이식치료가 활발하게 진행되고 있다. 특히 가톨릭대학교 외신경계 유전테연구센터에서는 난치성 혈관질환 중 놔경색, 버거씨병 등 환자 64명에게서 현저한 치료 효과를 보았다.

  • PDF

Public Understanding of Cloning and Internet $\ddot{O}effentlichkeit$ (배아복제의 '공중의 이해'와 인터넷 공론: 2005년 5월 20일 황우석 교수의 배아줄기세포 연구성과 발표에 따른 생명윤리논쟁을 중심으로)

  • Suh Yi-Jong
    • Journal of Science and Technology Studies
    • /
    • v.5 no.1 s.9
    • /
    • pp.125-148
    • /
    • 2005
  • This paper deals with public understanding of the stem cell cloning discussed in the Internet, based upon the case study of public discourse about Dr. Hwang's international publication of an advanced research of Stem Cell in Korean context. Public understanding of the stem cell cloning in Korea is characterized as follows: (1) it was defined as therapeutic cloning, (2) it was legitimized as a national pride and a potential vehicle for long-term economic performance, (3) ethical issues were criticized by the exclusion of early embryo from human life and the ubiquity of abortion in Korea.

  • PDF

Epigenetic Regulation by Modification of Histone Methylation in Embryonic Stem Cells (히스톤 메틸화 변형을 통한 배아줄기세포의 후성 유전학적 조절)

  • Ha, Yang-Hwa;Kim, Young-Eun;Park, Jeong-A;Park, Sang-Kyu;Lee, Young-Hee
    • Development and Reproduction
    • /
    • v.15 no.4
    • /
    • pp.273-279
    • /
    • 2011
  • Epigenetic regulation is a phenomenon that changes the gene function without changing the underlying DNA sequences. Epigenetic status of chromosome is regulated by mechanisms such as histone modification, DNA modification, and RNAi silencing. In this review, we focused on histone methylation for epigenetic regulation in ES cells. Two antagonizing multiprotein complexes regulate methylation of histones to guide expression of genes in ES cells. The Polycomb repressive complex 2 (PRC2), including EED, EZH2, and SUZ12 as core factors, contributes to gene repression by increasing trimethylation of H3K27 (H3K27me3). In contrast, the Trithorax group (TrxG) complex including MLL is related to gene activation by making H3K4me3. PRC2 and TrxG accompany a variety of accessory proteins. Most prominent feature of epigenetic regulation in ES cells is a bivalent state in which H3K27me3 and H3K4me3 appear simultaneously. Concerted regulation of PRC2, TrxG complex, and H3K4- or H3K27-specific demethylases activate expression of pluripotency-related genes and suppress development-related genes in ES cells. Modified balance of the regulators also enables ES cells to efficiently differentiate to a variety of cells upon differentiating signals. More detailed insights on the epigenetic regulators and their action will lead us to better understanding and use of ES cells for future application.

In Vitro Differentiated Functional Cardiomyocytes from Parthenogenetic Mouse Embryonic Stem Cells (단위발생유래 생쥐 배아줄기세포로부터 체외 분화된 기능성 심근세포)

  • Shin Hyun-Ah;Kim Eun-Young;Lee Keum-Sil;Cho Hwang-Yun;Lee Won-Don;Park Se-Pill;Lim Jin-Ho
    • Reproductive and Developmental Biology
    • /
    • v.30 no.1
    • /
    • pp.47-52
    • /
    • 2006
  • This study was conducted to examine whether the parthenogenetic mouse embryonic stem (P-mES) cells can differentiate into functional cardiomyocytes in vitro similar to (mES) cells. p-mES04 and IVF-derived mES03 cells were cultured by suspension culture for 4 days. The formed embryoid bodies (EBs) were treated with 0.75% dimethyl-sulfoxide (DMSO) for further 4 days (4-/4+), and then plated onto gelatin coated culture dish. The appearance of contracting cardiomyocytes from the P-mES04 and mES03 cells was examined for 30 days. The highest cumulative frequency was detected at days 13 (69.83%) and 22 (61.3%), respectively. By immunocytochemistry, beating P-mES04 cells were positively stained with muscle specific anti-sarcomeric a-actinin Ab and cardiac specific anti-cardiac troponin I Ab similar to contracted mES03 cells. When the expression of cardiac muscle-specific genes was analyzed by RT-PCR, beating P-mES04 cells were expressed cardiac specific L-type calcium channel, a1C, cardiac myosin heavy chain a, cardiac muscle heavy polypeptide $7{\beta}$, GATA binding protein 4 and atrial natriuretic factor, but not expressed skeletal muscle specific L-type calcium channel, a1S, which was similar to male adult heart cells and mES03-derived beating cardiomyocytes. The result demonstrates that the P-mES cells can be used as an alternative for the study on the characteristic analysis of in vitro cardiomyocyte differentiation from the ES cells.

Characterization of MACS Isolated Cells from Differentiated Human ES Cells (인간 배아줄기세포로부터 분화된 세포에서 MACS 방법을 이용하여 분리한 세포의 특성에 대한 연구)

  • Cho, Jae Won;Lim, Chun Kyu;Shin, Mi Ra;Bang, Kyoung Hee;Koong, Mi Kyoung;Jun, Jin Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.3
    • /
    • pp.171-178
    • /
    • 2006
  • Objective: Human embryonic stem (ES) cells have a great potential in regenerative medicine and tissue engineering. The human ES cells could be differentiated into specific cell types by treatments of growth factors and alterations of gene expressions. However, the efficacy of guided differentiation and isolation of specific cells are still low. In this study, we characterized isolated cells from differentiated human ES cells by magnetic activated cell sorting (MACS) system using specific antibodies to cell surface markers. Methods: The undifferentiated hES cells (Miz-hESC4) were sub-cultured by mechanical isolation of colonies and embryoid bodies were spontaneously differentiated with DMEM containing 10% FBS for 2 weeks. The differentiated cells were isolated to positive and negative cells with MACS system using CD34, human epithelial antigen (HEA) and human fibroblast (HFB) antibodies, respectively. Observation of morphological changes and analysis of marker genes expression were performed during further culture of MACS isolated cells for 4 weeks. Results: Morphology of the CD34 positive cells was firstly round, and then it was changed to small polygonal shape after further culture. The HEA positive cells showed large polygonal, and the HFB positive spindle shape. In RT-PCR analysis of marker genes, the CD34 and HFB positive cells expressed endodermal and mesodermal genes, and HEA positive cells expressed ectodermal genes such as NESTIN and NF68KD. The marker genes expression pattern of CD34 positive cells changed during the extension of culture time. Conclusion: Our results showed the possibility of successful isolation of specific cells by MACS system from undirected differentiated human ES cells. Thus, MACS system and marker antibodies for specific cell types might be useful for guided differentiation and isolation of specific cells from human ES cells.

Derivation of Mouse ES Cells from Isolated Blastomeres in Culture Media Supplemented with LIF (LIF를 첨가한 배양액을 이용한 할구 유래 생쥐 배아줄기세포주의 확립)

  • Cho, Jae-Won;Lim, Chun-Kyu;Ko, Duck-Sung;Kang, Hee-Jung;Jun, Jin-Hyun
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.77-86
    • /
    • 2008
  • This study was carried out to investigate the effect of leukemia inhibitory factor (LIF) on the derivation of mouse ES cells from isolated blastomeres. Two-cell stage mouse embryos were obtained from superovulated BDF1 female mice. Collected embryos were cultured to blastocyst stage in culture medium supplemented with 0, 1,000, 2,500 or 5,000 U/mL of LIF. Cultured blastocysts were examined by counting the number of cells in the inner cell mass (ICM) and trophectoderm (TE) using differential staining method. When 2-cell embryos were cultured with 2,500 U/ml of LIF, the cell numbers of ICM significantly increased in comparing with those of the control($21.0{\pm}4.0$ vs. $15.9{\pm}5.0$, P<0.01) and 1,000 U/mL of LIF-containing group ($21.0{\pm}4.0$ vs. $16.6{\pm}4.9$, P<0.05). We used an ES cell establishment medium with 20% Knockout Serum Replacement and 0.01 mg/mL ACTH instead of fetal bovine serum. Establishing efficacy of ES cell lines were the highest in 2,500 U/mL of LIF-containing group as 36.7% (11/30). This culture medium was applied to the culture of isolated blastomeres and to derivate ES cell lines. Three ES cell lines (21.4%) from isolated blastomeres of 2-cell stage embryos were established. In further experiments, we could establish one ES cell line (4.0%) from single blastomere of 4-cell stage embryo. The subcultured ES cells and their embryoid bodies were characterized by analyzing gene expression for undifferentiation and differentiation marker gene using immunocytochemistry and RT-PCR. In conclusion, LIF supplementation in culture medium could increase the cell number in ICM of blastocysts and support derivation of ES cell lines from isolated blastomeres.

  • PDF