• Title/Summary/Keyword: 배면공동

Search Result 38, Processing Time 0.027 seconds

A study on development of the high-flowable filling material and application in the old tunnel (터널 배면공동 뒤채움재 개발과 노후터널의 적용에 관한 연구)

  • Ma, Sang-Joon;Seo, Kyoung-Won;Bae, Gyu-Jin;An, Sang-Chul;Im, Kyung-Ha
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.195-205
    • /
    • 2002
  • Most tunnel damage such as cracks or leakage which exist in tunnel liner commonly, is caused by the cavities that exist behind the tunnel liner, through the tunnel safety inspections. These cavities were analysed to check if they affect the stability of tunnels. This study is on the development of the controlled low-strength and flowable filling material which an be applied to the cavity behind the tunnel lining. The backfilling material studied here is crushed sand and stone-dust which is in cake-state and is a by-product obtained in the producing process of aggregate. Varying the compound mixing ratio, laboratory tests of compression test and chemical analyses were carried out. In addition, the material was applied to an old tunnel for the performance assessment.

  • PDF

Comparison of the GPR response of the cavity behind the tunnel lining before and after the backfill grouting (터널 콘크리트 라이닝 배면공동 뒷채움 전후의 GPR 반응)

  • Moon, Yoon-Sup;Ha, Hee-Sang;Ko, Kwang-Beom
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.191-194
    • /
    • 2008
  • The cavity behind the tunnel lining, caused by overbrake, might be cause a severe instability during tunnel construction. So backfill grouting is essentially required. GPR(Ground penetrating Radar) is widely used to identify the position and size of the cavity and to verify the effect of the backfill grouting. In this study, GPR survey with 450 MHz antenna was implied to access the effect of the backfill grouting before and after the work to the crown part of ○○ tunnel in Seoul respectively. The result of GPR survey conducted before the backfill, was revealed that cavities behind the lining were existed in the areas of 8 spans. Finally, from the GPR survey implied after backfilling, it was turned out that backfill grouting was successfully carried out. Also, GPR survey was ascertained the better contact between lining and rock base at arrangement of bar span.

  • PDF

Integrated Application of GPR, IE and IR Methods to Detection of the Rear Cavity of Concrete (콘크리트 배면공동 탐지를 위한 GPR, IE 및 IR기법의 복합 적용)

  • Noh, Myung-Gun;Oh, Seok-Hoon;Jang, Bong-Seok
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.338-346
    • /
    • 2009
  • Integrated analysis of GPR, impact echo (IE) and impulse response (IR) was performed to detect the rear cavity of concrete for a test-bed which was made with the same scale and component ratio to the real concrete structure. The test-bed was designed to be capable of observing various response reflecting the existence of iron reinforcing bar and cavity. GPR survey did not clearly resolve the existence of the cavity, although distinguishable responses were observed in the presence of the cavity. In contrast, IE and IR method showed distinct responses, indicating the existence of the cavity. Finally, integrated application of the three methods makes it possible to exactly identify the location of the cavity, although the iron reinforcing bar made a little variation of response.

A study on a Integrated analysis for survey of the cavity behind the Concrete (콘크리트 배면 공동탐사를 위한 복합적 해석 연구)

  • Noh, Myung-Gun;Oh, Seok-Hoon;Suh, Baek-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.185-189
    • /
    • 2009
  • Integrated analysis of GPR, impact echo and impulse response for detection of the rear cavity of concrete was performed on the test-bed which was made in the same scale and component ratio to the real concrete structure. GPR survey may roughly delineate the location of the cavity, but applying the IE and IR technique to the test-bed, the location was clearly identified.

  • PDF

Detection of Cavities Behind Concrete Walls Using a Microphone (마이크로폰을 이용한 콘크리트 벽체 배면의 공동 탐사)

  • Kang, Seonghun;Lee, Jong-Sub;Han, WooJin;Kim, Sang Yeob;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.19-28
    • /
    • 2022
  • Cavities behind concrete walls can adversely affect the stability of structures. Thus study aims to detect cavities behind concrete structures using a microphone in a laboratory model test. A small-scale concrete wall is constructed in a chamber, which is composed of a reinforced concrete plate and dry soil. A plastic bowl is then placed between the plate and soil to simulate a cavity behind the concrete structure. Leaky surface acoustic waves are generated by impacting the concrete plate using a hammer and are measured using a microphone. The measured signals are analyzed using natural frequencies, and cavity-free sections are evaluated. The test results show that the first natural frequency decreases at the cavity section due to the flexural vibration behavior of the plate. In addition, the amplitude corresponding to the first natural frequency decreases as the measurement location becomes farther from the cavity center and significantly decreases at the measurement locations near the rebars. This study demonstrates that a microphone may be useful to detect cavities behind concrete walls.

A Study on Development of Lightweight Foam Filling Material for the Voids behind Tunnel Liner using Stone-dust and Application to the Old Tunnel (석분을 이용한 터널 뒤채움용 경량기포 충전재의 개발과 현장적용에 대한 연구)

  • Ma, Sang-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.139-147
    • /
    • 2003
  • The most tunnel damage such as cracks or leakage which exist in tunnel lining commonly, is caused by the voids where exist behind the tunnel lining, through the tunnel safety inspections. These voids were analysed to affect to a stability of a running-tunnel seriously. The aim of this paper is to develope the lightweight foam concrete for tunnel backfilling material using stone-dust of cake state and to apply the lightweight foam concrete developed to the old tunnel. This paper shows the basic properties of lightweight foam concrete mixed with stone-dust including flow rate, unit volume weight, absorption rate and compressive strength. In addition, according to the designed compound ratio, the lightweight foam concrete was applied to the ASSM tunnel for an application assessment. The engineering application of the lightweight foam concrete as the old tunnel's backfilling material was confirmed in this assessment.

An Experimental Study on Estimation of Size and Thickness of Cavitation(Void)s under Concrete Slabs and Tunnel Linings Using Law Frequency Type Radar(GPR) (저주파수 레이더(GPR)에 의한 콘크리트 상판 및 터널 라이닝 배면 공동의 크기 및 두께 추정에 관한 실험 연구)

  • Park, Seok-Kyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.95-104
    • /
    • 2006
  • The presence of cavitations under pavements or behind tunnel linings of concrete is likely to result in collapse. One method of detecting such voids by non-destructive means is low frequency type radar(GPR). By the way, the size and thickness of small cavitation can't be detected by the present radar technology with low frequency and low resolution when it apply to civil structures like that. To overcome these problems and limitations, this study aims to develope and propose a new analysis method for estimating the depth, cross-sectional size and thickness of cavitations using low frequency radar. A new proposed method is based on the experiments that are carried out for analyzing the correlation between the measurement values(the amplitudes of radar return) of low frequency radar and various type of cavitations. In this process, the threshold value for radar image processing which aims to represent only cavitations to be fitted size can be obtained. As the results, it is clarified that a proposed method has a possibility of estimating cavitation depth, size and thickness with good accuracy in laboratory scale.

A Study on Frequency and Time Domain Interpretation for Safety Evaluation of old Concrete Structure (노후된 콘크리트 구조물의 안전도 평가를 위한 초음파기법의 주파수 및 시간영역 해석에 관한 연구)

  • Suh Backsoo;Sohn Kwon-Ik
    • Tunnel and Underground Space
    • /
    • v.15 no.5 s.58
    • /
    • pp.352-358
    • /
    • 2005
  • For non-destructive testing of concrete structures, time and frequency domain method were applied to detect cavity in underground model and pier model. To interpret the measured data, time domain method made use of tomography which was completed with first arrivaltime and inversion method. In this steady, frequency domain method using Fourier transform was tried. Maximum frequency in the frequency domain was analyzed to calculate location of cavity.

Optimal Geophysical Exploration Performance Method for Common Detection Behind a Sewer (하수관로 배면 공동 탐지를 위한 최적 물리탐사 방법)

  • Kim, Jinyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.8
    • /
    • pp.11-17
    • /
    • 2018
  • Recently, road subsidence has been increasing in urban areas, threatening the safety of citizens. In the lower part of the road, various road facilities such as water supply and drainage pipelines and telecommunication facilities are buried, and the deterioration of the facilities causes the road subsidence. Especially, in the case of old sewer which are attracting attention as a main cause of ground subsidence, the risk of subsidence is calculated indirectly through CCTV exploration. Currently, we are finding cavity through GPR exploration. However, it is difficult to find the sewer back cavity because it is explored from the surface of the road. Thus, the nondestructive cavity exploration techniques was investigated in this study and we confirmed the applicability through experiments on the test-bed. In this study a new quantitative method is proposed to detect the cavity around sewer.