• Title/Summary/Keyword: 배깅 알고리즘

Search Result 20, Processing Time 0.025 seconds

PE file malware detection using opcode and IAT (Opcode와 IAT를 활용한 PE 파일 악성코드 탐지)

  • JeongHun Lee;Ah Reum Kang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.103-106
    • /
    • 2023
  • 코로나 팬데믹 사태로 인해 업무환경이 재택근무를 하는 환경으로 바뀌고 악성코드의 변종 또한 빠르게 발전하고 있다. 악성코드를 분석하고 백신 프로그램을 만들면 새로운 변종 악성코드가 생기고 변종에 대한 백신프로그램이 만들어 질 때까지 변종된 악성코드는 사용자에게 위협이 된다. 본 연구에서는 머신러닝 알고리즘을 사용하여 악성파일 여부를 예측하는 방법을 제시하였다. 일반적인 악성코드의 구조를 갖는 Portable Executable 구조 파일을 파이썬의 LIEF 라이브러리를 사용하여 Certificate, Imports, Opcode 등 3가지 feature에 대해 정적분석을 하였다. 학습 데이터로는 정상파일 320개와 악성파일 530개를 사용하였다. Certificate는 hasSignature(디지털 서명정보), isValidcertificate(디지털 서명의 유효성), isNotExpired(인증서의 유효성)의 feature set을 사용하고, Imports는 Import Address Table의 function 빈도수를 비교하여 feature set을 구축하였다. Opcode는 tri-gram으로 추출하여 빈도수를 비교하여 feature set을 구축하였다. 테스트 데이터로는 정상파일 360개 악성파일 610개를 사용하였으며 Feature set을 사용하여 random forest, decision tree, bagging, adaboost 등 4가지 머신러닝 알고리즘을 대상으로 성능을 비교하였고, bagging 알고리즘에서 약 0.98의 정확도를 보였다.

  • PDF

Performance of a Model to Predict Complication Occurance after Radical Gastrectomy according to Thresholds (임계값 설정을 통한 근치적 위절제술 후 합병증 발생 예측 모델의 성능 평가)

  • Su-Yeon Lim;Ja-Yun Choi
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.687-689
    • /
    • 2024
  • 위암은 전 세계적인 주요 건강문제이며, 근치적 위절제술은 위암의 표준치료이다. 근치적 위절제술 후 치료목표는 합병증 발생을 낮춰 병전 상태로 빠르게 회복하는 데 있다. 따라서, 근치적 위절제술 후 합병증 발생 여부를 선별하여 예측할 수 있는 성능이 좋은 모델을 개발하는 것은 위암환자의 회복에 매우 중요하다. 랜덤포레스트 모델은 여러 개의 결정트리를 활용한 배깅 방식의 대표적인 알고리즘으로 의료 데이터를 기반으로 한 예측에 있어 뛰어난 성능을 보여 주었다. 그러나 실제 데이터는 불균형이 빈번하게 발생하여 모델의 예측 성능에 영향을 미치므로, 최적의 분류 임계값을 설정하여 다수 클래스에 대한 편향을 줄이는 것이 중요하다. 따라서, 본 연구는 최근 10년 간 일개 대학병원의 전자의무기록 데이터를 활용하여 근치적 위절제술 후 합병증 발생을 예측하는 랜덤포레스트 모델을 개발하고, 임계값 설정을 통해 불균형 데이터에 대한 모델의 성능을 평가하고자 한다.

Ensemble learning of Regional Experts (지역 전문가의 앙상블 학습)

  • Lee, Byung-Woo;Yang, Ji-Hoon;Kim, Seon-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.2
    • /
    • pp.135-139
    • /
    • 2009
  • We present a new ensemble learning method that employs the set of region experts, each of which learns to handle a subset of the training data. We split the training data and generate experts for different regions in the feature space. When classifying a data, we apply a weighted voting among the experts that include the data in their region. We used ten datasets to compare the performance of our new ensemble method with that of single classifiers as well as other ensemble methods such as Bagging and Adaboost. We used SMO, Naive Bayes and C4.5 as base learning algorithms. As a result, we found that the performance of our method is comparable to that of Adaboost and Bagging when the base learner is C4.5. In the remaining cases, our method outperformed the benchmark methods.

Exploring the Feature Selection Method for Effective Opinion Mining: Emphasis on Particle Swarm Optimization Algorithms

  • Eo, Kyun Sun;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.11
    • /
    • pp.41-50
    • /
    • 2020
  • Sentimental analysis begins with the search for words that determine the sentimentality inherent in data. Managers can understand market sentimentality by analyzing a number of relevant sentiment words which consumers usually tend to use. In this study, we propose exploring performance of feature selection methods embedded with Particle Swarm Optimization Multi Objectives Evolutionary Algorithms. The performance of the feature selection methods was benchmarked with machine learning classifiers such as Decision Tree, Naive Bayesian Network, Support Vector Machine, Random Forest, Bagging, Random Subspace, and Rotation Forest. Our empirical results of opinion mining revealed that the number of features was significantly reduced and the performance was not hurt. In specific, the Support Vector Machine showed the highest accuracy. Random subspace produced the best AUC results.

지능형 IoT서비스를 위한 기계학습 기반 동작 인식 기술

  • Choe, Dae-Ung;Jo, Hyeon-Jung
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.19-28
    • /
    • 2016
  • 최근 RFID와 같은 무선 센싱 네트워크 기술과 객체 추적을 위한 센싱 디바이스 및 다양한 컴퓨팅 자원들이 빠르게 발전함에 따라, 기존 웹의 형태는 소셜 웹에서 유비쿼터스 컴퓨팅 웹으로 자연스럽게 진화되고 있다. 유비쿼터스 컴퓨팅 웹에서 사물인터넷(IoT)은 기존의 컴퓨터를 대체할 수 있는데, 이것은 곧 한 사람과 주변 사물들 간에 연결되는 네트워크가 확장되는 것과 동시에 네트워크 안에서 생성되는 데이터의 수가 기하급수적으로 증가되는 것을 의미한다. 따라서 보다 지능적인 IoT 서비스를 위해서는, 수많은 미가공 데이터들 사이에서 사람의 의도와 상황을 실시간으로 정확히 파악할 수 있어야 한다. 이때 사물과의 상호작용을 위한 동작 인식 기술(Gesture recognition)은 집적적인 접촉을 필요로 하지 않기 때문에, 미래의 사람-사물 간 상호작용에 응용될 수 있는 잠재력을 갖고 있다. 한편, 기계학습 분야의 최신 알고리즘들은 다양한 문제에서 사람의 인지능력을 종종 뛰어넘는 성능을 보이고 있는데, 그 중에서도 의사결정나무(Decision Tree)를 기반으로 한 Decision Forest는 분류(Classification)와 회귀(Regression)를 포함한 전 영역에 걸쳐 우월한 성능을 보이고 있다. 따라서 본 논문에서는 지능형 IoT 서비스를 위한 다양한 동작 인식 기술들을 알아보고, 동작 인식을 위한 Decision Forest의 기본 개념과 구현을 위한 학습, 테스팅에 대해 구체적으로 소개한다. 특히 대표적으로 사용되는 3가지 학습방법인 배깅(Bagging), 부스팅(Boosting) 그리고 Random Forest에 대해 소개하고, 이것들이 동작 인식을 위해 어떠한 특징을 갖는지 기존의 연구결과를 토대로 알아보았다.

A New Ensemble Machine Learning Technique with Multiple Stacking (다중 스태킹을 가진 새로운 앙상블 학습 기법)

  • Lee, Su-eun;Kim, Han-joon
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.3
    • /
    • pp.1-13
    • /
    • 2020
  • Machine learning refers to a model generation technique that can solve specific problems from the generalization process for given data. In order to generate a high performance model, high quality training data and learning algorithms for generalization process should be prepared. As one way of improving the performance of model to be learned, the Ensemble technique generates multiple models rather than a single model, which includes bagging, boosting, and stacking learning techniques. This paper proposes a new Ensemble technique with multiple stacking that outperforms the conventional stacking technique. The learning structure of multiple stacking ensemble technique is similar to the structure of deep learning, in which each layer is composed of a combination of stacking models, and the number of layers get increased so as to minimize the misclassification rate of each layer. Through experiments using four types of datasets, we have showed that the proposed method outperforms the exiting ones.

Malicious Insider Detection Using Boosting Ensemble Methods (앙상블 학습의 부스팅 방법을 이용한 악의적인 내부자 탐지 기법)

  • Park, Suyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.267-277
    • /
    • 2022
  • Due to the increasing proportion of cloud and remote working environments, various information security incidents are occurring. Insider threats have emerged as a major issue, with cases in which corporate insiders attempting to leak confidential data by accessing it remotely. In response, insider threat detection approaches based on machine learning have been developed. However, existing machine learning methods used to detect insider threats do not take biases and variances into account, which leads to limited performance. In this paper, boosting-type ensemble learning algorithms are applied to verify the performance of malicious insider detection, conduct a close analysis, and even consider the imbalance in datasets to determine the final result. Through experiments, we show that using ensemble learning achieves similar or higher accuracy to other existing malicious insider detection approaches while considering bias-variance tradeoff. The experimental results show that ensemble learning using bagging and boosting methods reached an accuracy of over 98%, which improves malicious insider detection performance by 5.62% compared to the average accuracy of single learning models used.

A Study on Classification Models for Predicting Bankruptcy Based on XAI (XAI 기반 기업부도예측 분류모델 연구)

  • Jihong Kim;Nammee Moon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.333-340
    • /
    • 2023
  • Efficient prediction of corporate bankruptcy is an important part of making appropriate lending decisions for financial institutions and reducing loan default rates. In many studies, classification models using artificial intelligence technology have been used. In the financial industry, even if the performance of the new predictive models is excellent, it should be accompanied by an intuitive explanation of the basis on which the result was determined. Recently, the US, EU, and South Korea have commonly presented the right to request explanations of algorithms, so transparency in the use of AI in the financial sector must be secured. In this paper, an artificial intelligence-based interpretable classification prediction model was proposed using corporate bankruptcy data that was open to the outside world. First, data preprocessing, 5-fold cross-validation, etc. were performed, and classification performance was compared through optimization of 10 supervised learning classification models such as logistic regression, SVM, XGBoost, and LightGBM. As a result, LightGBM was confirmed as the best performance model, and SHAP, an explainable artificial intelligence technique, was applied to provide a post-explanation of the bankruptcy prediction process.

Building battery deterioration prediction model using real field data (머신러닝 기법을 이용한 납축전지 열화 예측 모델 개발)

  • Choi, Keunho;Kim, Gunwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.243-264
    • /
    • 2018
  • Although the worldwide battery market is recently spurring the development of lithium secondary battery, lead acid batteries (rechargeable batteries) which have good-performance and can be reused are consumed in a wide range of industry fields. However, lead-acid batteries have a serious problem in that deterioration of a battery makes progress quickly in the presence of that degradation of only one cell among several cells which is packed in a battery begins. To overcome this problem, previous researches have attempted to identify the mechanism of deterioration of a battery in many ways. However, most of previous researches have used data obtained in a laboratory to analyze the mechanism of deterioration of a battery but not used data obtained in a real world. The usage of real data can increase the feasibility and the applicability of the findings of a research. Therefore, this study aims to develop a model which predicts the battery deterioration using data obtained in real world. To this end, we collected data which presents change of battery state by attaching sensors enabling to monitor the battery condition in real time to dozens of golf carts operated in the real golf field. As a result, total 16,883 samples were obtained. And then, we developed a model which predicts a precursor phenomenon representing deterioration of a battery by analyzing the data collected from the sensors using machine learning techniques. As initial independent variables, we used 1) inbound time of a cart, 2) outbound time of a cart, 3) duration(from outbound time to charge time), 4) charge amount, 5) used amount, 6) charge efficiency, 7) lowest temperature of battery cell 1 to 6, 8) lowest voltage of battery cell 1 to 6, 9) highest voltage of battery cell 1 to 6, 10) voltage of battery cell 1 to 6 at the beginning of operation, 11) voltage of battery cell 1 to 6 at the end of charge, 12) used amount of battery cell 1 to 6 during operation, 13) used amount of battery during operation(Max-Min), 14) duration of battery use, and 15) highest current during operation. Since the values of the independent variables, lowest temperature of battery cell 1 to 6, lowest voltage of battery cell 1 to 6, highest voltage of battery cell 1 to 6, voltage of battery cell 1 to 6 at the beginning of operation, voltage of battery cell 1 to 6 at the end of charge, and used amount of battery cell 1 to 6 during operation are similar to that of each battery cell, we conducted principal component analysis using verimax orthogonal rotation in order to mitigate the multiple collinearity problem. According to the results, we made new variables by averaging the values of independent variables clustered together, and used them as final independent variables instead of origin variables, thereby reducing the dimension. We used decision tree, logistic regression, Bayesian network as algorithms for building prediction models. And also, we built prediction models using the bagging of each of them, the boosting of each of them, and RandomForest. Experimental results show that the prediction model using the bagging of decision tree yields the best accuracy of 89.3923%. This study has some limitations in that the additional variables which affect the deterioration of battery such as weather (temperature, humidity) and driving habits, did not considered, therefore, we would like to consider the them in the future research. However, the battery deterioration prediction model proposed in the present study is expected to enable effective and efficient management of battery used in the real filed by dramatically and to reduce the cost caused by not detecting battery deterioration accordingly.

Boosted DNA Computing for Evolutionary Graphical Structure Learning (진화하는 그래프 구조 학습을 위한 부스티드 DNA 컴퓨팅)

  • Seok Ho-Sik;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.265-267
    • /
    • 2005
  • DNA 컴퓨팅은 분자 수준(molecular level)에서 연산을 수행한다. 따라서 일반적인 실리콘 기반의 컴퓨터에서와는 달리, 순차적인 연산 제어를 보장하기 어렵다는 특징이 있다. 그러나 DNA 컴퓨팅은 화학반응에 기초한 연산이기 때문에, 실험자가 의도한 연산을 많은 수의 분자에 동시에 적용할 수 있으므로 실리콘 기반의 컴퓨터와는 비교할 수 없는 병렬 연산을 구현할 수 있다. 병렬 연산을 구현하고자 할 때, 일반적으로 연산에 사용하는 모든 DNA 분자들을 대상으로 연산을 구현할 수도 있다. 그러나 전체가 아닌 일부의 분자들을 상대로 연산을 수행하는 것 역시 가능하며 이 때 자연스러운 방법으로 사용할 수 있는 방법이 배깅(Bagging)이나 부스팅(Boosting)과 같은 앙상블(ensemble) 계열의 학습 방법이다. 일반적인 부스팅과 달리 가중치를 부여하는 것이 아니라 특정 학습자(learner)를 나타내는 분자들을 증폭한다면 가중치를 분자의 양으로 표현하는 것이 가능하므로 분자 수준에서 앙상블 계열의 학습을 구현하는 것이 가능하다. 본 논문에서는 앙상블 계열의 학습 방법 중 특히 부스팅의 효과를 DNA 컴퓨팅에 응용하고자 할 때, 어떤 방법이 가능하며, 표현 과정에서 고려해야 할 사항은 어떠한 것들이 있는지 고려하고자 한다. 본 논문에서는 규모를 사전에 한정할 수 없는 진화 가능한 그래프 구조(evolutionary graph structure)를 학습할 수 있는 방법을 찾아보고자 한다. 진화 가능한 그래프 구조는 기존의 DNA 컴퓨팅 방법으로는 학습할 수 없는 문제이다. 그러나 조합 가능한 수를 사전에 정의할 수 없기 때문에 분자의 수에 상관없이 동일한 연산 시간에 문제를 해결할 수 있는 DNA 컴퓨팅의 장정을 가장 잘 발휘할 수 있는 문제이기도 하다.개별 태스크의 특성에 따른 성능 조절과 태스크의 변화에 따른 빠른 반응을 자랑으로 한다. 본 논문에선 TIB 알고리즘을 리눅스 커널에 구현하여 성능을 평가하였고 그 결과 리눅스에서 사용되는 기존 인터벌 기반의 알고리즘들에 비해 좋은 전력 절감 효과를 얻을 수 있었다.과는 한식 외식업체들이 고객들의 재구매 의도를 높이기 위해서는 한식 외식업체의 서비스요인, 식음료요인, 이벤트 요인 등을 강화함으로써 전반적인 종사원 서비스 품질과 식음료품질을 높이는 전략을 취해야 한다는 것을 시사해주고 있다. 본 연구는 대구 경북소재 한식 외식업체만을 대상으로 하여 연구를 실시하여 연구의 일반화와 한식 외식업체를 이용하는 이용 고객들이 한식 외식업체를 재방문하는 재구매 의도가 발생하는데 있어 발생하는 과정을 설명하는 종단적 연구를 실시하지 못한 한계점을 가지고 있다.아직 산업 디자인이 품질경쟁력에 크게 영향을 미치는 성숙단계에 이르지 못하였음을 의미한다. (2) 제품 디자인에게 영향을 끼치는 유의적인 변수는 연구개발력, 연구개발투자 수준, 혁신활동 수준(5S, TPM, 6Sigma 운동, QC 등)이며, 제품 디자인은 우선 품질경쟁력을 높여 간접적으로 고객만족과 고객 충성을 유발하는 것으로 추정되었다. 상기의 분석결과로부터, 본 연구는 다음과 같은 정책적 함의를 도출하였다. 첫째, 신상품 개발과 혁신을 위한 포괄적인 연구개발 프로젝트를 품질 경쟁력의 주요 결정요인(제품의 기본성능, 신뢰성, 수명(내구성) 및 제품 디자인)과 연계하여 추진해야 할 것이다. 둘째, 기업은 디자인 경영 마인드 제고와 디자인 전문인력 양성을, 대학은 디자인 현장 업무를 통하여 창의력 증진과 기획 및 마케팅 능력 교육을, 정부는 디자인 기술개발 및 디자인 교육지원의 강화를 통하여 각각 디자인 경쟁력$\righta

  • PDF