• Title/Summary/Keyword: 배기 후처리시스템

Search Result 53, Processing Time 0.022 seconds

A Study on Effect of Urea-SCR Aftertreatment System upon Exhaust Emissions in a LPG Steam Boiler (LPG 증기보일러의 배기 배출물에 미치는 요소-SCR 후처리 시스템의 영향에 관한 연구)

  • Bae, Myung-Whan;Song, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.1-11
    • /
    • 2014
  • The aim of this study is to investigate the effect of SCR reactor on the exhaust emissions characteristics in order to develop a urea-SCR aftertreatment system for reducing $NO_x$ emissions. The experiments are conducted by using a flue tube LPG steam boiler with the urea-SCR aftertreatment system. The urea-SCR aftertreatment system utilizes the ammonia converted from 17% aqueous urea solution injected in front of SCR catalyst as a reducing agent for reducing $NO_x$ emissions. The equivalence ratio, urea injection amount, ammonia slip and $NO_x$ conversion efficiency relative to boiler load are applied to discuss the experimental results. In this experiment, the average equivalence ratio is calculated by changing only the fuel consumption rate while the intake air amount is constantly fixed at $25,957.11cm^3/sec$. The average equivalence ratios are 1.38, 1.11, 0.81 and 0.57 when boiler loads are 100, 80, 60 and 40%. The $NO_x$ conversion efficiency is raised with increasing urea injection amount, and $NH_3$ slip is also boosted at the same time. Consequently, the $NO_x$ conversion efficiency relative to boiler load should be examined in combination with urea injection amount and $NH_3$ slip. The results are calculated by 89, 85, 77 and 79% for the boiler loads of 100, 80, 60 and 40%. The appropriate amount of urea injection for the respective boiler load can be not discussed by only $NO_x$ emissions, and should be determined by considering the $NO_x$ conversion efficiency, $NH_3$ slip and reactive activation temperature simultaneously. In this study, the urea amounts of 230, 235, 233 and 231 mg/min are injected at the boiler loads of 100, 80, 60 and 40%, and the final $NH_3$ slips are measured by 8.48, 5.58, 11.97 and 11.34 ppm at the same conditions. THC emission is affected by the SCR reactor under other experimental conditions except 100% engine load, and CO emission at only 40% engine load. The rest of exhaust emissions are not affected by the SCR reactor under all experimental conditions.

선박용 SCR 시스템 상용화 (운항 선박 실증 테스트 및 적합성 인증)

  • Yang, Hui-Seong;Park, Jae-Hyeon;Park, Chan-Do;Lee, Seong-Yeong;Go, Jun-Ho;Song, Seok-Yong;Lee, Jae-U;Ryu, Seung-Ho;An, Gwang-Heon
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.41-41
    • /
    • 2011
  • 국제해사기구(IMO)에서2016년에 건조되는 선박부터 Tier III 규제를 예고하고 있다. 이 규 제를 만족하기 위하여 엔진 전처리 기술 및 후처리 기술 개발과 실증 연구가 활발히 진행되고 있다. 이중 SCR(Selective Catalytic Reduction) 반응을 이용한 질소산화물 저감기술이 80% 이상의 Tier III NOx 규제치를 만족할 수 있는 유일한 기술이다. 육상 플랜트에서 실증과 검증이 확보된 SCR 기술의 선박 엔진에 대한 적용을 위해서는 선박의 급격한 운전조건 변화와 엔진에 의한 저주파 진동에 대한 촉매 내구성 확보가 중요하다. 본 연구에서 기공 분포면에서 마이크로 기공보다는 메죠 및 매크로 기공쪽으로 구조를 개선함으로써 촉매 사용시 우려되는 배기가스중의 Soot 또는 2차 합성물질에 의한 촉매기공 막힘을 최대한 방지한 상용 SCR 촉매를 개발하였다. 또한 촉매에 대한 내구성 실증을 위하여 현재 운항 선박(한진피츠버그호)에 장착하여 실증 실험을 수행하였다. 기존 corrugate 타입의 촉매보다 40% 정도의 부피 감소와 차압 감소를 달성하였고 이로 인하여 선박내 제한된 공간에 효율적으로 SCR 시스템 설치가 가능할 것으로 생각된다. 그리고 본 연구에서는 가이드 베인 설치 없이 유동 균일화를 달성하여 반응기 전체의 크기 축소가 가능하다. 이는 추가적인 비용 및 압력 손실 저감, 유지 보수 공간 확보 등의 장점이 있다.

  • PDF

Catalytic Oxidation of Volatile Organic Compounds Over Spent Three-Way Catalysts (배기가스 정화용 폐 자동차 촉매를 이용한 휘발성 유기화합물의 제거)

  • Shim, Wang Geun;Kim, Sang Chai
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.574-581
    • /
    • 2008
  • The optimum regeneration conditions for the regeneration of three way spent catalysts (TWCs), which were taken from automobiles with different driving conditions, were investigated to evaluate the suitability as alternative catalysts for removing VOCs. The spent catalysts were washed with five different acids ($HNO_3$, $H_2SO_4$, $C_2H_2O_4$, $C_6H_8O_7$, and $H_3PO_4$) to remove contaminants and examine the optimum conditions for recovering the catalytic activity. The physicochemical properties of spent and its regenerated TWCs were evaluated by using nitrogen adsorption-desorption isotherms, XRD, and ICP. The relative atomic ratios of contaminants and platinum group metals (PGMs) of the spent TWCs were greatly dependent on the placed positions. The main contaminants formed were lubricant oil additives and metallic components. Also, the regeneration treatment increased the PGMs ratio, BET surface area, and average pore diameter of TWCs. The catalytic activity results indicated that the spent TWCs have the possibility for removing VOCs. Moreover, the employed acid treatments greatly enhanced the catalytic activity of the spent TWCs. Especially, nitric and oxalic acids provided the most improvement in the catalytic behavior. The catalytic activities of the regenerated TWCs were significantly influenced by the containing platinum ratios rather than the removal ratios of contaminants and the changes in the structural properties offered by the acid treatments.

Development and Validation of Urea- SCR Control-Oriented Model for NOX and NH3 Slip Reduction (NOX 및 NH3 Slip 저감을 위한 Urea-SCR 제어기반 모델 개발 및 검증)

  • Lee, Seung Geun;Lee, Seang Wock;Kang, Yeonsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • To satisfy stricter $NO_X$ emission regulations for light- and heavy-duty diesel vehicles, a control algorithm needs to be developed based on a selective catalytic reaction (SCR) dynamics model for chemical reactions. This paper presents the development and validation of a SCR dynamics model through test rig experiments and MATLAB simulations. A nonlinear state space model is proposed based on the mass conservation law of chemical reactions in the SCR dynamics model. Experiments were performed on a test rig to evaluate the effects of the $NO_X$ and $NH_3$ concentrations, gas temperature, and space velocity on the $NO_X$ conversion efficiency for the urea-SCR system. The parameter values of the proposed SCR model were identified using the experimental datasets. Finally, a control-oriented model for an SCR system was developed and validated from the experimental data in a MATLAB simulation. The results of this study should contribute toward developing a closed-loop control strategy for $NO_X$ and $NH_3$ slip reduction in the urea-SCR system for an actual engine test bench.

A Polarization-based Frequency Scanning Interferometer and the Measurement Processing Acceleration based on Parallel Programing (편광 기반 주파수 스캐닝 간섭 시스템 및 병렬 프로그래밍 기반 측정 고속화)

  • Lee, Seung Hyun;Kim, Min Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.253-263
    • /
    • 2013
  • Frequency Scanning Interferometry(FSI) system, one of the most promising optical surface measurement techniques, generally results in superior optical performance comparing with other 3-dimensional measuring methods as its hardware structure is fixed in operation and only the light frequency is scanned in a specific spectral band without vertical scanning of the target surface or the objective lens. FSI system collects a set of images of interference fringe by changing the frequency of light source. After that, it transforms intensity data of acquired image into frequency information, and calculates the height profile of target objects with the help of frequency analysis based on Fast Fourier Transform(FFT). However, it still suffers from optical noise on target surfaces and relatively long processing time due to the number of images acquired in frequency scanning phase. 1) a Polarization-based Frequency Scanning Interferometry(PFSI) is proposed for optical noise robustness. It consists of tunable laser for light source, ${\lambda}/4$ plate in front of reference mirror, ${\lambda}/4$ plate in front of target object, polarizing beam splitter, polarizer in front of image sensor, polarizer in front of the fiber coupled light source, ${\lambda}/2$ plate between PBS and polarizer of the light source. Using the proposed system, we can solve the problem of fringe image with low contrast by using polarization technique. Also, we can control light distribution of object beam and reference beam. 2) the signal processing acceleration method is proposed for PFSI, based on parallel processing architecture, which consists of parallel processing hardware and software such as Graphic Processing Unit(GPU) and Compute Unified Device Architecture(CUDA). As a result, the processing time reaches into tact time level of real-time processing. Finally, the proposed system is evaluated in terms of accuracy and processing speed through a series of experiment and the obtained results show the effectiveness of the proposed system and method.

Numerical Study on Auto-ignition and Combustion Emissions Using Gasoline/Ethanol Surrogates (휘발유/에탄올 혼합연료의 자연발화 및 연소배기가스 특성에 관한 수치적 연구)

  • Lee, Eui Ju
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.1-6
    • /
    • 2016
  • More than five thousands transportation fires occurannually in Korea and the resulting destruction of property and loss of life is huge and results in traffic and environmental pollution. The recent development of automobile technology such as the hybrid concept and use of bio fuels makes fire protection even more difficult due to a lack of understanding of the new adapted system including vehicle engines. In this study, a numerical simulation was performed on a PSR (perfectly Stirred Reactor) to simulate an automobile engine and to clarify the effect of gasoline/ethanol surrogates as a fuel. The temperature, NOx and soot emissions were predicted to decrease with increasing ethanol content, but that of unburned hydrocarbons was found to increase dramatically. The result will provide not only the basic thermal characteristics for engines and their after-treatment systems, but also make it possible to assess the potential for fire events in these systems when an ethanol mixed fuel is used in gasoline vehicles.

Analysis of Performance Characteristics on Diesel Engine with Aftertreatment and EGR System (후처리 시스템을 장착한 디젤엔진의 EGR 밸브 작동에 따른 성능 분석)

  • Park, Cheol-Woong;Choi, Young;Lim, Gi-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.124-129
    • /
    • 2010
  • The direct injection (DI) diesel engine has become a prime candidate for future transportation needs because of its high thermal efficiency. However, nitrogen oxides (NOx) increase in the local high temperature regions and particulate matter (PM) increases in the diffusion flame region within diesel combustion. Therefore, the demand for developing hybrid system consist of exhaust gas recirculation (EGR) and aftertreatment system as well as diesel particulate filter (DPF) or lean NOx trap (LNT) should be applied. The variation of EGR rate due to the malfunction of EGR valve can affect not only the combustion stability of engine but also the performance of aftertreatment system. In this research, 2.0 liter 4-cylinder turbocharged diesel engine was used to investigate the combustion and emission characteristics for various operating conditions with EGR. While the fuel consumption was increased with increase of EGR rate, NOx emission was improved by maximum 90% at low speed, low load operating condition. To achieve combustion stability and reliability of aftertrearment system with minimum penalty in fuel consumption and emissions, the fault diagnosis of EGR malfunction must be employed.

Risk Evaluation of Scrubber Deposition By-Products in the Diffusion Process (Diffusion 공정 내 스크러버 퇴적 부산물의 위험성 평가)

  • Minji Kim;Jinback Lee;Seungho Jung;Keunwon Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.2
    • /
    • pp.76-83
    • /
    • 2024
  • In the semiconductor manufacturing process, the Diffusion process generates various reactive by-products. These by-products are deposited inside the pipes of post-processing and exhaust treatment systems, posing a potential risk of substantial dust explosions. In this study, three methods material verification, selection of analysis samples, and risk analysis were employed to address the substances produced during the Diffusion process. Among the materials handled in the Diffusion process, ZrO2, TEOD, and E-DEOS were identified as raw material capable of generating by-product dust. Test for Minimum Ignition Energy and dust explosion were conducted on the by-products collected from each processing facility. The results indicated that, in the case of MIE, none of the by-products ignited. However, the dust explosion test revealed that ZrO2 exhibited a maximum pressure of 7.6 bar and Kst value of 73.3 bar·m/s, its explosive hazard. Consequently, to mitigate such risks in semiconductor processes, it is excessive buildup.

A Basis Study on the Optimal Design of the Integrated PM/NOx Reduction Device (일체형 PM/NOx 동시저감장치의 최적 설계에 대한 기초 연구)

  • Choe, Su-Jeong;Pham, Van Chien;Lee, Won-Ju;Kim, Jun-Soo;Kim, Jeong-Kuk;Park, Hoyong;Lim, In Gweon;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1092-1099
    • /
    • 2022
  • Research on exhaust aftertreatment devices to reduce air pollutants and greenhouse gas emissions is being actively conducted. However, in the case of the particulate matters/nitrogen oxides (PM/NOx) simultaneous reduction device for ships, the problem of back pressure on the diesel engine and replacement of the filter carrier is occurring. In this study, for the optimal design of the integrated device that can simultaneously reduce PM/NOx, an appropriate standard was presented by studying the flow inside the device and change in back pressure through the inlet/outlet pressure. Ansys Fluent was used to apply porous media conditions to a diesel particulate filter (DPF) and selective catalytic reduction (SCR) by setting porosity to 30%, 40%, 50%, 60%, and 70%. In addition, the ef ect on back pressure was analyzed by applying the inlet velocity according to the engine load to 7.4 m/s, 10.3 m/s, 13.1 m/s, and 26.2 m/s as boundary conditions. As a result of a computational fluid dynamics analysis, the rate of change for back pressure by changing the inlet velocity was greater than when inlet temperature was changed, and the maximum rate of change was 27.4 mbar. This was evaluated as a suitable device for ships of 1800kW because the back pressure in all boundary conditions did not exceed the classification standard of 68mbar.

A Study on Optimization of Catalyst Injection Controller for Reducing Soot (Soot 저감을 위한 촉매 분사 최적화 방안 연구)

  • Kim Byeong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.278-284
    • /
    • 2006
  • The popularity of the diesel engine revolves around its fuel efficiency, reliability, and durability compared to the gasoline engine. However, the main disadvantage of diesel engine is the emission of particulate matter (PM) which is known as carcinogenic substance. Therefore recent progress in engine management and after-treatment systems has led to great improvement to satisfy strict emission regulations. To comply with powerful environment regulations, this study is focused on the decrease of PM(soot) as to increase significantly exhaust temperature. Therefore, HC injection is used as the method to go to the PM regeneration temperature in front of filters composed of diesel oxidation catalyst(DOC) and diesel particulate filter(DPF). And especially, LPG is used because it has good chemical reactions with exhaust. In this study, we could manufacture the test bench thought LPG injection - with which soot can be decreased-, construct 3 kinds of database(DB) according to quantity of temperature to decide the LPG injection quantity and develop DPF ECU algorithm.

  • PDF