• Title/Summary/Keyword: 배기온도

Search Result 495, Processing Time 0.023 seconds

A Study on the Properties and Combustion of Orimulsion (오리멀젼의 특성과 연소에 관한 연구)

  • 이재구;김재호;박태준;손성근;홍재창;김용구;최영찬
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.04a
    • /
    • pp.165-174
    • /
    • 2000
  • 새로운 에너지원으로 개발된 오리멀젼의 국내 활용에 관한 기술적인 특성을 파악하기 위하여 연료 특성과 연소에 대한 실험적인 연구를 수행하였다. 연료저장을 위한 최적온도는 6$0^{\circ}C$이었으며 온도가 낮으면 점화특성이 불량하고 너무 상승하는 경우에는 계면분리 현상이 보였다. 연소를 위해 필요한 연소실온도는 $600^{\circ}C$ 이상이 요구되었고 수분의 비등폭발에 의해 2차 연소가 특징적으로 관찰되었다. 오리멀젼 연소시 배기가스중 오염물질 농도는 과잉공기비에 SO$_2$ 가 1700-2200ppm , NOx 100-150ppm 으로 측정되었다.

  • PDF

Characteristics of Heat Flux in Intake and Exhaust Valve of Methanol Fueled Engine (메탄올기관과 흡.배기 밸브에서의 열유속 특성)

  • 김문헌;임연기;이종태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.208-217
    • /
    • 1996
  • Instantaneous surface temperature and unsteady heat flux of intake and exhaust valve in methanol fueled engine were investigate as a function of compression ratio and engine speed. To accomplish this purpose, the instantaneous temperature sensor was designed and it was installed into three point of intake and exhaust valve head to measure unsteady temperature. The unsteady heat flux at valves was evaluated using one dimensional heat conduction equation with the valve head temperature and temperature gradient. And also mean heat flux of intake and exhaust valve for each stroke were evaluated as a function of engine speed.

  • PDF

An Intelligent Ventilation System in an Enclosed Nursery Pig House (지능형 돈사 환기 제어 시스템)

  • Kim, Seok-hun;Lee, Sae-bom;Lee, Geon-won;Im, Kwang-hyuk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.429-430
    • /
    • 2014
  • 본 논문은 돈사 내부의 환기부를 연속적으로 작동한 상태에서 환기부의 입기팬 및 배기팬의 회전수를 감소시키거나 증가시킴으로서 축사 내부로 유입되는 환기량을 조절하고, 이에 따라 환기 운영 시에 축사 내부의 온도 편차를 최소화함과 동시에 유해가스에 의한 돈사 내 공기오염을 방지할 수 있는 지능형 돈사 환기 제어 시스템 설계에 관한 연구이다. 본 시스템에는 온도 측정 데이터를 일정간격으로 저장하고, 저장된 온도 변화의 특성을 추출하여 지능적으로 돈사의 상태를 최적으로 유지할 수 있는 지능형 환기 제어 모델, 사용자의 연령 및 상황을 고려한 가시적이고 직관적인 사용자 위주의 인터페이스 설계가 포함된다.

  • PDF

Comparative Study on the Effect of Turbulence Models for the Numerical Analysis on Exhaust Plume of Oxidizer-Rich Preburner (산화제과잉 예연소기 배기플룸 수치해석에서의 난류모델에 따른 효과 비교연구)

  • Ha, Seong-Up;Moon, Il-Yoon;Moon, Insang;Lee, Soo-Yong
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.63-69
    • /
    • 2014
  • The oxidizer-rich preburner's combustion tests were fulfilled in the development process of staged combustion cycle rocket engines. The exhaust plume from an oxidizer-rich preburner is relatively transparent because combustion takes place in oxidizer rich state. During hot fire tests a still and infrared images were captured to visualize the plume structure, temperature distribution and so on. In addition, the exhaust plume was numerically investigated to figure out the detailed characteristics. The combustion was not considered for the numerical modeling, but the mixing of exhaust plume with circumstantial air was modeled by species transport model with several turbulence models. The inner structure of plume was configured out by the comparison of numerical results with experimental results, and the validity of applied numerical models was verified.

Shape Characteristics of Exhaust Plume of Dual-Stage Plasma Thruster using Direct-Current Micro-Hollow Cathode Discharge (직류 마이크로 할로우 음극 방전을 이용한 이단 마이크로 플라즈마 추력기의 배기 플룸의 형상 특성)

  • Ho, Thi Thanh Trang;Shin, Jichul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.54-62
    • /
    • 2016
  • Micro plasma thruster (${\mu}PT$) was studied experimentally with a dual-stage micro-hollow cathode discharge (MHCD) plasma. Electrostatic-like acceleration exhibiting more directional and elongated exhaust plume was achieved by a dual layer MHCD at the total input power less than 10 W with argon flow rate of 40 sccm. V-I characteristic indicated that there was an optimal regime for dual-stage operation where the acceleration voltage across the second stage remained constant. Estimated exhaust plume length showed a similar trend to the analytic estimate of exhaust velocity which scales with an acceleration voltage. ${\mu}PT$ with multiple holes exhibited similar performance with single-hole thruster indicating that higher power loading is possible owing to decreased power through each hole. Boltzmann plot of atomic argon spectral lines showed average electron excitation temperature of about 2.6 eV (~30,170 K) in the exhaust plume.

Performance of Heat Recovery System using Evaporative Cooling (증발냉각을 이용한 배기열 회수장치의 성능에 관한 연구)

  • Yoo, Seong Yeon;Kim, Tae Ho;Kim, Myung Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • Evaporative cooling is a very effective way for exhaust heat recovery that uses both latent heat and sensible heat. This study investigated the performance of a heat recovery system using evaporative cooling. The experimental apparatus comprised a plastic heat exchanger, a water spray nozzle, an air blowing fan, a water circulation pump, and measuring sensors for the temperature, humidity, and flow rate. The effectiveness of the sensible heat recovery without evaporation was measured and compared with that of the total heat recovery with evaporation. The effectiveness of the sensible and total heat recoveries decreased as the air flow rate increased, and a much higher effectiveness was obtained with the counterflow arrangement in both cases. For total heat recovery, the effectiveness increased with the water flow rate, and the parallel flow arrangement was found to be more sensitive to the water flow rate than the counterflow arrangement.

Effect of Compression Ratio Change on Emission Characteristics of HCNG Engine (압축비 변화가 수소-천연가스 엔진의 배기특성에 미치는 영향)

  • Lee, Sung Won;Lim, Gi Hun;Park, Cheol Woong;Choi, Young;Kim, Chang Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.473-479
    • /
    • 2013
  • This study focused on a heavy-duty natural gas engine fuelled with HCNG (CNG: 70 vol%, hydrogen: 30 vol%) and CNG. To study the emission characteristics of an HCNG engine with high compression ratio, the exhaust gas of CNG and HCNG fuel were analyzed in relation to the change in the compression ratio at the half load condition. The results showed that the thermal efficiency improved with an increase in the compression ratio. Consequently, $CO_2$ emission decreased. CO emission increased with inefficient oxidation due to the low exhaust gas temperature. $NO_x$ emission with high compression ratio was increased at the same excess air ratio condition. However, $NO_x$ emission was not affected by a compression ratio exceeding ${\lambda}$ = 1.9 because of the same MBT timing.

Heat Recovery System from Chamber of Agricual Products Dryer (농산물건조기의 배풍열 재이용 기술에 관한 연구)

  • Paek, Y.;Kim, Y.J.;Kang, G.C.;Ryou, Y.S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.07a
    • /
    • pp.241-246
    • /
    • 2002
  • 본 연구는 농산물을 건조할 때 배풍구로 버려지는 열을 회수하여 건조열원으로 재이용할 수 있는 배풍열 회수장치를 개발하여 연료절감 및 열회수장치의 성능을 분석한 연구 결과 다음과 같은 결론을 얻었다. 가. 농산물건조기의 열수지를 분석한 결과 투입열량을 100%로 하였을 경우, 배기열은 13.2%, 배풍역량 77.7%, 관류열량은 9.1%로 나타났다. 나. 고추를 건조시 배풍구입구온도가 55-6$0^{\circ}C$일 때 배풍구 출구온도 41-43$^{\circ}C$, 일때 흡입구 입구온도는 25-28$^{\circ}C$, 흡입구 출구온도는 41-43$^{\circ}C$로 나타나 건조실로 41-43$^{\circ}C$의 높은 온도를 투입할 수 있었다. 다. 배풍열 량이 단위 시간당 4700kca1에서 6000kca1로 증가할 때, 흡입 열량은 2200kca1에서 3000kca1로 나타났다. 라. 고추의 초기함수율이 80%에서 15%까지 떨어지는데 관행건조는 약 27시간이 경과했으며, 배풍연회수건조를 할 경우는 약 24시간이 경과했으며 그 결과 배풍열 회수건조가 약 3시간정도 소요시간이 단축되었음을 알 수 있었음. 마. 배풍열 회수장치를 사용하여 농산물건조기 투입량의 47%, 배풍열량의 64%의 열량을 회수할 수 있었다. 바. 배풍열 회수 농산물건조기 성능시험 결과 고추 100kg 건조시 연료소모량은 43%, 건조 소요비용은 21% 감소시킬 수 있었다.

  • PDF

An Experimental Study of the Fuel Additive to Improve the Performance of a 2-Stroke Large Diesel Engine (2행정 대형 디젤엔진의 성능향상을 위한 연료첨가제의 실험적 연구)

  • Ryu, Younghyun;Lee, Youngseo;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.620-625
    • /
    • 2015
  • In an effort to reduce the onset of global warming, the International Maritime Organization Marine Environment Protection Committee (IMO MEPC) proposed the reduction in ship speeds as a way of lowering the proportion of carbon dioxide ($CO_2$) in the Green House Gas emissions from ships. To minimize fuel costs, shipping companies have already been performing slow steaming for their own fleets. Specifically, the slow steaming approach has been adopted for most ocean-going container lines. In addition, because of the increased marine fuel cost that is required to enable increased capacity, there is an urgent need for more advanced fuel-saving technologies. Therefore, in this present study, we propose a fuel-cost reduction method that can improve the performance of diesel engines. We introduce a predetermined amount (0.025% of the amount of fuel used) of fuel additive (oil-soluble calcium-based organometallic compound). For improved experimental accuracy, as the test subjects, we utilize a large two-stroke diesel engine installed in land plants. The loads of the test engine were classified as low, medium, and high (50, 75, and 100%, respectively). We compare the engine performance parameters (power output, fuel consumption rate, p-max, and exhaust temperature) before and after the addition of fuel additives. Our experimental results, confirmed that we can realize fuel-cost savings of at least 2% by adding the fuel additive in low load conditions (50%). Likewise, the maximum combustion pressure was found to have increased. On the other hand, we observed that there was a reduction in the exhaust temperature.

A Study on the Development of $CO_2$ Recycle Oxy-Fuel Combustion Heating System ($CO_2$ 재순환형 산소연소 가열시스템 개발에 관한 연구)

  • Jeong Yu-Seok;Lee Eun-Kyung;Go Chang-Bok;Jang Byung-Lok;Han Hyung-Kee;Noh Dong-Soon
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2006.05a
    • /
    • pp.412-419
    • /
    • 2006
  • An Experimental study was conducted on $CO_{2}$ recycle combustion heating system using pure oxygen instead of conventional air as an oxidant, which is thereby producing a flue gas of mostly $CO_{2}$ and water vapor($H_{2}O$ and water vapor($H_{2}O$) and resulting in higher $CO_{2}$ concentration. The advantages of the system are not only the ability to control high temperatures characteristic of oxygen combustion with recycling $CO_{2}$ but also the possibility to reduce NOx emission in the flue gas. A small scale industrial reheating furnace simulator and specially designed variable flame burner were used to characterize the $CO_{2}$ recycle oxy-fuel combustion, such as the variations of furnace pressure, temperature and composition in the flue gas during recycle. It was found that $CO_{2}$ concentration in the flue gas was about 80% without $CO_{2}$recycle. The furnace temperature and pressure and pressure were decreased due to recycle and the NOx emission was also reduced to maintain under 100ppm.

  • PDF