• Title/Summary/Keyword: 배기가스 규제

Search Result 175, Processing Time 0.023 seconds

[$CO_2$] Emission from Carbon of Marine Fuel Oil in New Ships (신조선에서 연료탄소로부터의 $CO_2$ 배출 특성)

  • Jang Mi-Suk;Kim Eun-Chan;Moon Il-Sung;Lee Jae-Woo;Kwon Oh-Sin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.3
    • /
    • pp.148-153
    • /
    • 2006
  • This study dealt with the measurement of exhausted gas concentration, the estimation of a combustion efficiency, and the review of IMO indexing. We concentrated on establishing the basic data to take a counterplan coping with $CO_2$ regulations. The average combustion efficiency was 98% in shop test of new engines and 96.5% in sea trial test of new ships, respectively. It would become lower for the old engine or/and ship. High combustion efficiency results in high $CO_2$ emission and low combustion efficiency results in high emission of incomplete combustion products. The efficient method reducing $CO_2$ emission without an increase in noxious air pollutants would be the development of a substitute fuel and the fuel-efficient and economical engine, and the fair play among shipping agencies in a ship speed. In reviewing of IMO indexing, it is necessary to begin by analyzing the carbon content of a marine fuel for a precise estimates.

  • PDF

Study on the simulation of a spark ignition engine using BOOST (상용 소프트웨어를 이용한 스파크 점화 기관의 시뮬레이션에 관한 연구)

  • Jeong, Chang-Sik;Woo, Seok-Keun;Ryu, Soon-Pil;Yoon, Keon-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.733-742
    • /
    • 2016
  • In recent years, gas engines fueled with LNG or synthetic gas have been attracting considerable attention for marine use owing to their potential to facilitate better fuel economy and to reduce emissions. It has been confirmed that gas engines using the Otto cycle, which involves premixed combustion, can satisfy Tier III regulations without the EGR or SCR system. The objective of this study is to acquire simulation technologies for predicting gas engine performances in industrial fields. Using the commercial software BOOST, the simulation is conducted on a gasoline engine rather than a marine engine due to the gasoline engine's easier accessibility. This study consists of two stages. In the first stage published previously, the optimal modeling techniques for representing the behavior of the gas in the intake and exhaust systems were determined. In the current study, we formulated a method to evaluate the combustion and heat transfer processes in the cylinder and to ultimately determine the major performance parameters, given that the analytical model derived from the previous stage has been applied. Through this study, we were able to determine a combustion and heat transfer model and a valve discharge coefficient that are less reliant on empirical data: we were also able to formulate a methodology through which relevant constants are decided. We confirmed that the values of transient cylinder pressure variation, indicated mean effective pressure, and air supply can be successfully predicted using our modeling techniques.

A Study on the Installation of SCR System for Generator Diesel Engine of Existing Ship (기존 선박의 디젤발전기용 SCR 시스템 설치에 관한 연구)

  • Ryu, Younghyun;Kim, Hongryeol;Cho, Gyubaek;Kim, Hongsuk;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.412-417
    • /
    • 2015
  • The IMO MEPC has been increasingly strengthening the emission standard for marine environment protection. In particular, nitrogen oxide (NOx) emissions of all ocean-going ships built from 2016 will be required to comply with the Tier-III regulation. In this study, a vanadia based SCR (Selective Catalytic Reduction) system developed for ship application was installed on a diesel engine for power generation of the training ship T/S SAENURI in Mokpo National Maritime University. For the present study, the exhaust pipeline of the generator diesel engine was modified to fit the urea SCR system. This study investigated the NOx reduction performance according to the two kind of injection method of urea solution (40%): Auto mode through the PLC (Programable Logic Control) and Manual mode. We were able to find the ammonia slip conditions when in manual mode method. So, the optimal urea injection quantity can be controlled at each engine load (25, 35, 50%) condition. It was achieved 80% reduction on nitrogen oxide. Furthermore, we found that the NOx reduction performance was better with the load up-down (while down to 25% from 50%) than the load down-up (while up to 50% from 25%) test.

Study on the Application of V2G for Electric Vehicles in Korea Using Total Cost of Ownership Analysis (총소유비용 분석을 이용한 전기차의 V2G 도입에 대한 연구)

  • Kim, Younghwan;Lee, Jae-Seung
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.129-143
    • /
    • 2015
  • Increasing concerns on climate change and energy security accelerated policies to reduce green-house gas emission, especially from the transportation sector. Electric vehicle (EV) has been on the spotlight to deal with such environmental issue and V2G (Vehicle-to-Grid) technology began to draw attentions as an alternative to reduce ownership costs while contributing to an efficient and decentralized power grid. This study conducts a scenario analysis on total cost of ownership of EV under V2G scheme and compare with non-V2G EV and Internal Combustion Engine (ICE) vehicle. As result, V2G service is expected to provide an annual average profit of $210 to EV users willing to reverse flow its residual power in the battery. The profit from V2G service leaves a margin of $4,530 over operational lifetime, compared with $2,420 cost of charge for non-V2G EV. In summary, total cost of ownership of V2G-capable EV was 6.2% less than non-V2G EV and 10.2% higher than ICE vehicle. The results confirm a comparative economic advantage of operating EV under V2G scheme. Increased number of EVs with V2G service has shown to provide positive effects to power industry for valley filling in load distribution, thus, favorably increasing the overall economic feasibility.

Designation of fuel oil scrubber nozzle positioning using CFD analysis and PIV methods (CFD 해석 및 PIV 실험을 통한 연료유 스크러버의 노즐 위치선정)

  • Kim, In-Cheol;Kim, Chang-Goo;Park, Sung-Jin;Cho, Dong-Yeon;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.773-778
    • /
    • 2015
  • Global warming has recently become an issue that has resulted in a growing trend to minimize environmental pollution. The International Maritime Organization (IMO) has shown that the majority of marine atmospheric pollution occurs as a result of emissions from marine vessels. Therefore, the environmental regulations and emission standards regarding marine vessels have gradually become stricter, and the research and development in this area is experiencing significant progress. In this study, a nozzle for a fuel oil scrubber was investigated using computational fluid dynamics (CFD) and particle imaging velocimetry (PIV). Experiments were conducted on scaled-down model of the scrubber to determine its performance, which was then compared with CFD results. Based on the experimental results, it was found that at a spray angle of $66^{\circ}$, the spray velocity at the nozzle was 20.1 m/s. From this comparison, a full-scale scrubber model was analyzed using CFD, and the effect of the positioning of the nozzle was studied.

A Study on the Prediction of Fuel Consumption of a Ship Using the Principal Component Analysis (주성분 분석기법을 이용한 선박의 연료소비 예측에 관한 연구)

  • Kim, Young-Rong;Kim, Gujong;Park, Jun-Bum
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.335-343
    • /
    • 2019
  • As the regulations of ship exhaust gas have been strengthened recently, many measures are under consideration to reduce fuel consumption. Among them, research has been performed actively to develop a machine-learning model that predicts fuel consumption by using data collected from ships. However, many studies have not considered the methodology of the main parameter selection for the model or the processing of the collected data sufficiently, and the reckless use of data may cause problems such as multicollinearity between variables. In this study, we propose a method to predict the fuel consumption of the ship by using the principal component analysis to solve these problems. The principal component analysis was performed on the operational data of the 13K TEU container ship and the fuel consumption prediction model was implemented by regression analysis with extracted components. As the R-squared value of the model for the test data was 82.99%, this model would be expected to support the decision-making of operators in the voyage planning and contribute to the monitoring of energy-efficient operation of ships during voyages.

Study of Robust Design of a Off-road Diesel Engine considering Emission characteristics of NOx and PM (NOx와 PM 배출물 특성을 고려한 오프로드 디젤 엔진의 강건 설계에 관한 연구)

  • Chung, Jin-Eun;Ahn, Jueng-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4729-4735
    • /
    • 2014
  • To protect the environment, the regulation of emissions from off-road engines which are relatively neglected, is being reinforced. This paper deals with the robust design of off-road diesel engines considering the emission characteristics. Measurements of the NOx and PM levels based on the DOE were carried out. The injector hole number, injection timing and EGR rate were selected as the control factors. The orthogonal arrays table $L_9(3^3)$ was made from 2 or 3 levels for each factor and measurements of emissions were accomplished based on the table. The small-the-better SN ratio according to the Taguchi method was evaluated. The ANOVA (analysis of variance) for the SN ratio was conducted. The injection timing on the NOx emissions and the EGR rate on the PM have the largest effect on the low-load operation condition. The confidence levels of the control factors were more than 90%.

Development of a Basic Contrail Prediction Model for the Contrail Reduction Certification of Commercial Aircraft (민항기 비행운 저감 인증을 위한 비행운 예측 기초 모델 개발)

  • Choi, Jun-Young;Choi, Jae-Won;Kim, Hye-Min
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.11-19
    • /
    • 2021
  • Contrails are line-shaped clouds formed by the condensation of water vapor from the interaction of exhaust gas from aircraft engines and the high-altitude atmosphere. Contrails are known to aggravate global warming by creating a greenhouse effect by absorbing or reflecting radiation emitted from the Earth. In this study, development of a model that can quantitatively predict the contrail occurrence was conducted for the reduction of contrail, which is likely to form an aircraft certification category in the future. Based on prior research results, a model that can predict the occurrence of contrail between Tokyo and Qingdao was developed, in addition to proposing improved flight altitude that can minimize the occurrence of contrail.

Study for Zero Emission Vehicle Technology : Current Status and Recent Trends (무공해 자동차 기술의 현 상태와 발전방향)

  • Lee, Sunguk;Park, Byungjoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.377-384
    • /
    • 2019
  • To cope with severe global warming and environmental pollution problem regulations on automobile emissions and fuel efficiency has been tightened around the world. Therefore zero emission vehicles which do not use fossil fuels such as electric vehicles have attracted attention by government and both industry and academia at developed countries. In the market, electric vehicles are being selected from more and more consumers because of technological advances and policy support. Recently another zero emission vehicle, hydrogen fuel cell vehicle, is drawing attention and is expected to become deployed widely. This paper reviews technology, current status and global trends of zero emission vehicle. The economical analysis of zero emission vehicles are also presented.

A Convergence Study on the Effects of NH3/NOx Ratio and Catalyst Type on the NOx Reduction by Urea-SCR System of Diesel Engine (디젤엔진의 Urea-SCR 시스템에 의한 NH3/NOx 비율 및 촉매 방식이 NOx 저감에 미치는 영향에 관한 융합연구)

  • Yoon, Heung-Soo;Ryu, Yeon-Seung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.131-138
    • /
    • 2019
  • Diesel engines have important advantages over its gasoline counterpart including high thermal efficiency, high fuel economy and low emissions of CO, HC and $CO_2$. However, NOx reducing is more difficult on diesel engines because of the high $O_2$ concentration in the exhaust, marking general three way catalytic converter ineffective. Two method available technologies for continuous NOx reduction onboard diesel engines are Urea-SCR and LNT. The implementation of the Urea-SCR systems in design engines have made it possible for 2.5l and over engines to meet the tightened NOx emission standard of Euro-6. In this study, we investigate the characteristics of NOx reduction with respect to engine speed, load, types of catalyst and the $NH_3$/NOx ratio and present the conditions which maximize NOx reduction. Also we provide detailed experimental data on Urea-SCR which can be used for the preparation for standards beyond Euro-6.