본 연구에서는 부모의 사회경제적 지위가 자녀의 학업성취를 통해 재생산되도록 만드는 변수들의 영향을 밝히려고 하였다. 가족의 사회경제적 변수, 극히 사회자본과 문화자본이 독립적으로 또는 가족배경을 맥락으로 자녀의 학업성취도에 미치는 영향에 대해 분석하였다. 연구대상으로는 중고등학생 총 2771명의 사례를 분석하였다. 중학생에 비해 고등학생들의 학업성취에 미치는 부모의 사회경제적 배경변수의 영향력은 감소하였다. 그러나 사회자본과 문화자본의 영향력은 증가하였다. 성별에 따라 분석한 결과, 남학생의 경우는 부모의 사회경제적 변수와 가족의 사회자본과 문화자본의 영향력이 동시에 존재하나 여학생의 경우에는 사회자본과 문화자본의 영향이 거의 없고, 부모의 사회경제적 변수 중에서 아버지의 직업과 자산이 영향을 미치는 것으로 분석되었다. 사회자본과 문화자본의 영향력은 상당부분 부모의 사회경제적 자원에 흡수되는 경향이 있으나 가족의 자녀에 대한 관심은 여전히 학업성취도에 중요한 영향을 미치는 사회자본임을 발견하였다. 이번 연구결과를 통해 경제적 지원만으로는 자녀의 학업성취를 높이기 어려우며 사회자본이나 문화자본과 함께 결합된 사회경제적 지원이 자녀의 학업성취에 기여함을 발견하였다.
최근 많은 분야에서 인공지능을 사용한 산업이 각광을 받고 있고 그중 챗-GPT 로 인하여 챗봇에 관한 관심도가 높아져 관련 연구가 많이 진행되고 있다. 특히 질문에 대한 답변을 생성해주는 분야에 대한 연구가 많이 이루어지고 있는데, 질문-답변의 데이터 셋에 대한 학습 방식보다는 질문-답변-배경지식으로 이루어진 데이터 셋에 대한 학습 방식이 많이 연구가 되고 있다. 그러다 보니 배경지식을 어떤 방식으로 모델에게 이해를 해줄 지가 모델 성능에 큰 부분 차지한다. 그리고 최근 연구에 따르면 이러한 배경지식 정보를 이해시키기 위해 잠재 변수 모델링 기법을 활용하는 것이 높은 성능을 갖는다고 하고 트랜스포머 기반 모델 중 생성 문제에서 강점을 보이는 BART(Bidirectional Auto-Regressive Transformer)[1]도 주로 활용된다고 한다. 본 논문에서는 BART 모델에 잠재 변수 모델링 기법 중 잠재 변수를 어텐션에 곱하는 방식을 이용한 모델을 통해 답변 생성 문제에 관한 해결법을 제시하고 그에 대한 결과로 배경지식 정보를 담은 답변을 보인다. 생성된 답변에 대한 평가는 기존에 사용되는 BLEU 방식과 배경지식을 고려한 방식의 BLEU 로 평가한다.
In the video with a various environment, background modeling is important for extraction and recognition the moving object. For this object recognition, many methods of the background modeling are proposed in a process of preprocess. Among these there is a Kumar method which represents the Queue-based background modeling. Because this has a fixed period of updating examination of the frame, there is a limit for various system. This paper use a background modeling based on the queue. We propose the method that major parameters are decided as adaptive by background model. They are the queue size of the sliding window, the sire of grouping by the brightness of the visual and the period of updating examination of the frame. In order to determine the factors, in every process, RCO (Ratio of Correct Object), REO (Ratio of Error Object) and UR (Update Ratio) are considered to be the standard of evaluation. The proposed method can improve the existing techniques of the background modeling which is unfit for the real-time processing and recognize the object more efficient.
이글은 대의민주주의에서의 입법 메커니즘에 대한 이론적 논의를 전개한다. 이러한 논의를 근거로 한국 국회의원의 입법생산성에 영향을 미치는 변수들을 도출하고, 이 변수들이 16대와 17대 국회의 입법생산성에 미치는 효과를 분석한다. 이글의 경험분석은 국회의원의 입법생산성은 이들의 학력, 법조경력, 관직경력, 의정경력 같은 개인적 배경과 서로 무관하다는 사실을 보여준다. 이글의 경험분석에 의하면, 국회의원들의 개인배경보다는 원내 정당간의 역학관계와 소속정당의 여당지위, 그리고 의회요인들이 국회의원들의 입법생산성에 영향을 미치는 것으로 밝혀졌다. 이러한 분석결과는 한국 대의민주주의의 작동과 관련된 함의를 제공한다. 국회의원의 입법활동에 대한 정보를 접하기 어려운 환경에서는 국회의원의 개인배경에 의존하는 국회충원 방식이 대리인문제를 유발할 가능성이 높다. 이글은 국회의원 입법활동에서 발견되는 대리인 문제의 해소를 위한 제도적 방안들에 대해 논의한다.
Proceedings of the Korean Information Science Society Conference
/
2006.06b
/
pp.331-333
/
2006
다양한 환경을 포항하고 있는 동영상에서 움직이는 객체를 추출, 인식하기 위해서는 배경 모델링이 중요하다. 기존의 대표적인 배경 모델링 방법으로 통계적 방법을 이용한 $W^4$ 방법이 있지만 칼라 영상의 다양한 환경에서 한계를 보인다. 본 논문은 큐 기반 배경 모델링을 이용한다. 이때 주요한 환경 변수가 되는 슬라이딩 윈도우의 큐 크기와 RGB 값의 그룹핑 크기, 프레임의 갱신검사 주기를 적응적으로 결정하기 위한 방법을 제안한다. 환경 변수를 결정하기 위친 객체 검출율, 객체 오검출율, 갱신율을 평가 기준으로 삼는다. 제안된 방법으로 실시간 처리에 부적합한 기존의 영상 처리 기법들을 개선하여 보다 효과적으로 객체를 인식할 수 있다.
이 논문에서는 영화, CF 같은 영상물 제작 시 CG/실사 합성을 위해 배경기하정보를 추출하는 알고리즘을 제안한다. Metric Reconstruction 은 카메라 자동 보정을 통해 이루어지며 이는 오랫동안 연구되어 온 분야이다. 접근방법은 영상의 특징점 추적 정보와 카메라 내부변수 가정으로부터 유도되는 자기 보정 방식과 공간상에서 미리 기하 정보를 알고 있는 보정틀을 사용하는 방식으로 크게 분류될 수 있다. CG/실사 합성의 작업 효율성을 위해서는 배경 영상에 보정틀이 보이지 않는 것이 좋은데 자연 특징점(Natural Feature)에만 의존하는 자기 보정 방식의 경우 2K 급 영상에서 CG 객체를 합성했을 때 떨림이 느껴지지 않을 만큼 정확한 결과를 얻기 힘들다. 이 논문에서는 Polleyfeys[2]가 제안하였던 영상 시퀀스를 입력으로 하는 자기 보정 시스템을 바탕으로 마야 작업 환경에서의 핀홀 카메라 모델에 맞도록 카메라 내부변수의 비선형 최적화를 수행하는 방법과 사용자 개입을 통한 카메라 변수 정확도 향상방법을 제안한다.
According to U.S. Bureau of Census (1984), the number of older adults (over the age of sixty) has grown twice as fast as the rest of the population over the past twenty-five years. It is predicted that between 1980 and 2020, their number will double again, In 1985, National Bureau of Statistics, Economic Planning Board, Republic of Korea reported that the number of older adults over 60 years of age was 2.7 million (6.7% of the total population). It is projected that their number will become 3.9 million (8% of the total population) by the year 2000.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.31
no.6
/
pp.458-467
/
2019
The purpose of this study is the suggestion of optimized parameters in OI (Optimal Interpolation) by experimental study. The observation of applying optimal interpolation is ADCP (Acoustic Doppler Current Profiler) data at the southwestern sea of Korea. FVCOM (Finite Volume Coastal Ocean Model) is used for the barotropic model. OI is to the estimation of the gain matrix by a minimum value between the background error covariance and the observation error covariance using the least square method. The scaling factor and correlation radius are very important parameters for OI. It is used to calculate the weight between observation data and model data in the model domain. The optimized parameters from the experiments were found by the Taylor diagram. Constantly each observation point requires optimizing each parameter for the best assimilation. Also, a high accuracy of numerical model means background error covariance is low and then it can decrease all of the parameters in OI. In conclusion, it is expected to have prepared the foundation for research for the selection of ocean observation points and the construction of ocean prediction systems in the future.
The clustering method suggested in this paper produces clusters based on the 'rules of variables' by merging the 'training' and the identically structured reference data and then by filtering it to obtain the clusters of the 'training data' through the use of the 'tree classification model'. The reference dataset is generated by spatially contrasting it to the 'training data' through the 'reverse arcing' algorithm to effectively identify the clusters. The strength of this method is that it can be applied even to the mixture of continuous and discrete types of 'training data' and the performance of this algorithm is illustrated by applying it to the simulated data as well as to the actual data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.