• Title/Summary/Keyword: 방향 인식 알고리즘

Search Result 391, Processing Time 0.029 seconds

A Study on Performance Improvement of Business Card Recognition in Mobile Environments (모바일 환경에서의 명함인식 성능 향상에 관한 연구)

  • Shin, Hyunsub;Kim, Chajong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.318-328
    • /
    • 2014
  • In this paper, as a way of performance improvement of business card recognition in the mobile environment, we suggested a hybrid OCR agent which combines data using a parallel processing sequence between various algorithms and different kinds of business card recognition engines which have learning data. We also suggested an Image Processing Method on mobile cameras which adapts to the changes of the lighting, exposing axis and the backgrounds of the cards which occur depending on the photographic conditions. In case a hybrid OCR agent is composed by the method suggested above, the average recognition rate of Korean business cards has improved from 90.69% to 95.5% compared to the cases where a single engine is used. By using the Image Processing Method, the image capacity has decreased to the average of 50%, and the recognition has improved from 83% to 92.48% showing 9.4% improvement.

An Improved Area Edge Detection for Real-time Image Processing (실시간 영상 처리를 위한 향상된 영역 경계 검출)

  • Kim, Seung-Hee;Nam, Si-Byung;Lim, Hae-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.99-106
    • /
    • 2009
  • Though edge detection, an important stage that significantly affecting the performance of image recognition, has been given numerous researches on its execution methods, it still remains as difficult problem and it is one of the components for image recognition applications while it is not the only way to identify an object or track a specific area. This paper, unlike gradient operator using edge detection method, found out edge pixel by referring to 2 neighboring pixels information in binary image and comparing them with pre-defined 4 edge pixels pattern, and detected binary image edge by determining the direction of the next edge detection exploring pixel and proposed method to detect binary image edge by repeating step of edge detection to detect another area edge. When recognizing image, if edge is detected with the use of gradient operator, thinning process, the stage next to edge detection, can be omitted, and with the edge detection algorithm executing time reduced compared with existing area edge tracing method, the entire image recognizing time can be reduced by applying real-time image recognizing system.

High Performance Object Recognition with Application of the Size and Rotational Invariant Feature of the Fourier Descriptor to the 3D Information of Edges (푸리에 표현자의 크기와 회전 불변 특징을 에지에 대한 3차원 정보에 응용한 고효율의 물체 인식)

  • Wang, Shi;Chen, Hongxin;I, Jun-Ho;Lin, Haiping;Kim, Hyong-Suk;Kim, Jong-Man
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.170-178
    • /
    • 2008
  • A high performance object recognition algorithm using Fourier description of the 3D information of the objects is proposed. Object boundaries contain sufficient information for recognition in most of objects. However, it is not well utilized as the key solution of the object recognition since obtaining the accurate boundary information is not easy. Also, object boundaries vary highly depending on the size or orientation of object. The proposed object recognition algorithm is based on 1) the accurate object boundaries extracted from the 3D shape which is obtained by the laser scan device, and 2) reduction of the required database using the size and rotational invariant feature of the Fourier Descriptor. Such Fourier information is compared with the database and the recognition is done by selecting the best matching object. The experiments have been done on the rich database of MPEG 7 Part B.

A Study on forest fires Prediction and Detection Algorithm using Intelligent Context-awareness sensor (상황인지 센서를 활용한 지능형 산불 이동 예측 및 탐지 알고리즘에 관한 연구)

  • Kim, Hyeng-jun;Shin, Gyu-young;Woo, Byeong-hun;Koo, Nam-kyoung;Jang, Kyung-sik;Lee, Kang-whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1506-1514
    • /
    • 2015
  • In this paper, we proposed a forest fires prediction and detection system. It could provide a situation of fire prediction and detection methods using context awareness sensor. A fire occurs wide range of sensing a fire in a single camera sensor, it is difficult to detect the occurrence of a fire. In this paper, we propose an algorithm for real-time by using a temperature sensor, humidity, Co2, the flame presence information acquired and comparing the data based on multiple conditions, analyze and determine the weighting according to fire in complex situations. In addition, it is possible to differential management of intensive fire detection and prediction for required dividing the state of fire zone. Therefore we propose an algorithm to determine the prediction and detection from the fire parameters as an temperature, humidity, Co2 and the flame in real-time by using a context awareness sensor and also suggest algorithm that provide the path of fire diffusion and service the secure safety zone prediction.

An Algorithm for Filtering False Minutiae in Fingerprint Recognition and its Performance Evaluation (지문의 의사 특징점 제거 알고리즘 및 성능 분석)

  • Yang, Ji-Seong;An, Do-Seong;Kim, Hak-Il
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.3
    • /
    • pp.12-26
    • /
    • 2000
  • In this paper, we propose a post-processing algorithm to remove false minutiae which decrease the overall performance of an automatic fingerprint identification system by increasing computational complexity, FAR(False Acceptance Rate), and FRR(False Rejection Rate) in matching process. The proposed algorithm extracts candidate minutiae from thinned fingerprint image. Considering characteristics of the thinned fingerprint image, the algorithm selects the minutiae that may be false and located in recoverable area. If the area where the selected minutiae reside is thinned incorrectly due to noise and loss of information, the algorithm recovers the area and the selected minutiae are removed from the candidate minutiae list. By examining the ridge pattern of the block where the candidate minutiae are found, true minutiae are recovered and in contrast, false minutiae are filtered out. In an experiment, Fingerprint images from NIST special database 14 are tested and the result shows that the proposed algorithm reduces the false minutiae extraction rate remarkably and increases the overall performance of an automatic fingerprint identification system.

  • PDF

Measurement Algorithm of Vehicle Speed Using Real-Time Image Processing (영상의 실시간 처리에 의한 차량 속도의 계측 알고리즘)

  • Seo, Jeong-Goo;Lee, Jeong-Goo;Yun, Tae-Won;Hwang, Byong-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.1
    • /
    • pp.10-18
    • /
    • 2005
  • These studies developed system as well as its algorithm which can measure traffic flow and vehicle speed on the highway as well as road by using industrial television(ITV) system. This algorithm used the real time processing of dynamic images. The processing algorithm of dynamic images is developed and proved its validity by frame grabber. Frame grabber can process the information of a small number of sample points only instead of the whole pixel of the images. In the techniques of this algorithm, we made approximate contour of vehicle by allocating sampling points in cross-direction of image, and recognized top of contour of vehicle. Applying these technique, we measured the number of passing vehicles of one lane as well as multilane. Speed of each vehicle is measured by computing the time difference between a pair of sample points on two sample points lines.

  • PDF

Improved Expectation and Maximization via a New Method for Initial Values (새로운 초기치 선정 방법을 이용한 향상된 EM 알고리즘)

  • Kim, Sung-Soo;Kang, Jee-Hye
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.416-426
    • /
    • 2003
  • In this paper we propose a new method for choosing the initial values of Expectation-Maximization(EM) algorithm that has been used in various applications for clustering. Conventionally, the initial values were chosen randomly, which sometimes yields undesired local convergence. Later, K-means clustering method was employed to choose better initial values, which is currently widely used. However the method using K-means still has the same problem of converging to local points. In order to resolve this problem, a new method of initializing values for the EM process. The proposed method not only strengthens the characteristics of EM such that the number of iteration is reduced in great amount but also removes the possibility of falling into local convergence.

Fixed-Point Modeling and Performance Analysis of a SIFT Keypoints Localization Algorithm for SoC Hardware Design (SoC 하드웨어 설계를 위한 SIFT 특징점 위치 결정 알고리즘의 고정 소수점 모델링 및 성능 분석)

  • Park, Chan-Ill;Lee, Su-Hyun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.49-59
    • /
    • 2008
  • SIFT(Scale Invariant Feature Transform) is an algorithm to extract vectors at pixels around keypoints, in which the pixel colors are very different from neighbors, such as vortices and edges of an object. The SIFT algorithm is being actively researched for various image processing applications including 3-D image constructions, and its most computation-intensive stage is a keypoint localization. In this paper, we develope a fixed-point model of the keypoint localization and propose its efficient hardware architecture for embedded applications. The bit-length of key variables are determined based on two performance measures: localization accuracy and error rate. Comparing with the original algorithm (implemented in Matlab), the accuracy and error rate of the proposed fixed point model are 93.57% and 2.72% respectively. In addition, we found that most of missing keypoints appeared at the edges of an object which are not very important in the case of keypoints matching. We estimate that the hardware implementation will give processing speed of $10{\sim}15\;frame/sec$, while its fixed point implementation on Pentium Core2Duo (2.13 GHz) and ARM9 (400 MHz) takes 10 seconds and one hour each to process a frame.

Robust Reference Point and Feature Extraction Method for Fingerprint Verification using Gradient Probabilistic Model (지문 인식을 위한 Gradient의 확률 모델을 이용하는 강인한 기준점 검출 및 특징 추출 방법)

  • 박준범;고한석
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.6
    • /
    • pp.95-105
    • /
    • 2003
  • A novel reference point detection method is proposed by exploiting tile gradient probabilistic model that captures the curvature information of fingerprint. The detection of reference point is accomplished through searching and locating the points of occurrence of the most evenly distributed gradient in a probabilistic sense. The uniformly distributed gradient texture represents either the core point itself or those of similar points that can be used to establish the rigid reference from which to map the features for recognition. Key benefits are reductions in preprocessing and consistency of locating the same points as the reference points even when processing arch type fingerprints. Moreover, the new feature extraction method is proposed by improving the existing feature extraction using filterbank method. Experimental results indicate the superiority of tile proposed scheme in terms of computational time in feature extraction and verification rate in various noisy environments. In particular, the proposed gradient probabilistic model achieved 49% improvement under ambient noise, 39.2% under brightness noise and 15.7% under a salt and pepper noise environment, respectively, in FAR for the arch type fingerprints. Moreover, a reduction of 0.07sec in reference point detection time of the GPM is shown possible compared to using the leading the poincare index method and a reduction of 0.06sec in code extraction time of the new filterbank mettled is shown possible compared to using the leading the existing filterbank method.

EEG Signal Classification Algorithm based on DWT and SVM for Driving Robot Control (주행로봇제어를 위한 DWT와 SVM기반의 EEG신호 분류 알고리즘)

  • Lee, Kibae;Lee, Chong Hyun;Bae, Jinho;Lee, Jaeil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.117-125
    • /
    • 2015
  • In this paper, we propose a classification algorithm based on the obtained EEG(Electroencephalogram) signal for the control of 'left' and 'right' turnings of which a driving system composed of EEG sensor, Labview, DAQ, Matlab and driving robot. The proposed algorithm uses features extracted from frequency band information obtained by DWT (Discrete Wavelet Transform) and selects features of high discrimination by using Fisher score. We, also propose the number of feature vectors for the best classification performance by using SVM(Support Vector Machine) classifier and propose a decision pending algorithm based on MLD (Maximum Likelihood Decision) to prevent malfunction due to misclassification. The selected four feature vectors for the proposed algorithm are the mean of absolute value of voltage and the standard deviation of d5(2-4Hz) and d2(16-32Hz) frequency bands of P8 channel according to the international standard electrode placement method. By using the SVM classifier, we obtained 98.75% accuracy and 1.25% error rate. Also, when we specify error probability of 70% for decision pending, we obtained 95.63% accuracy and 0% error rate by using the proposed decision pending algorithm.