• 제목/요약/키워드: 방전.충전 시간

검색결과 85건 처리시간 0.033초

니들코크스의 전기이중층 거동에 미치는 산화처리/열처리 효과 (Effect of Acid / Heat Treatment on Electric Double Layer Performance of Needle Cokes)

  • 양선혜;김익준;최인식;김현수
    • 전기화학회지
    • /
    • 제12권1호
    • /
    • pp.34-39
    • /
    • 2009
  • 니들 코크스의 활성화를 위해 $HNO_3$$NaClO_3$ 혼합용액에서의 산처리와 열처리를 행하였다. 산화처리 코크스와 열처리한 코크스의 미세구조는 XRD, FESEM, elemental analysis, BET, Raman spectroscopy를 이용하였으며, 전기이중층 거동은 충방전 분석을 행하였다. 니들 코크스는 산화처리 시간에 따라 산소의 중량 %의 증가와 함께 층간이 분리되어(001) 구조로 상변화가 일어나고, $200^{\circ}C$ 이상의 열처리에서 흑연구조 특성인(002) 구조로 되돌아갔다. 이들 산화처리 과정에서 층간에 관능기가 도입 되어 구조결함이 발생하고 1차 충전에서 전계 활성화에 의해 층간을 확장되어 2차 충전에서 전기이중층 용량을 발생 시키는 것으로 보인다. 24시간 산화처리후 $300^{\circ}C$ 열처리한 코크스의 2.5 V까지의 2 전극 기준에서 구한 활물질 중량 당 용량과 전극 부피 당 용량은 각각 32.1 F/g과 29.5 F/ml을 나타내었다.

펄스 측정법에 기반한 리튬이차전지 출력 측정에 관한 전산 모사 (Computational Simulation on Power Prediction of Lithium Secondary Batteries by using Pulse-based Measurement Methods)

  • 박주남;변승우;;한세경;최진혁;유명현;이용민
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.33-38
    • /
    • 2015
  • 시간대별 효율적인 전력 운영과 전력품질 향상을 위해 ESS (Energy Storage System)의 보급이 세계적으로 활발하게 이루어지고 있다. 이러한 ESS용 전원소자로 리튬이차전지의 채용이 급격히 늘어남에 따라, 리튬이차전지의 수명 및 출력 열화 거동을 측정 및 예측하는 기술이 시급히 요구되고 있다. 특히, ESS 운영에 있어 핵심 특성인 리튬이차 전지 출력은 측정이 어려울 뿐만 아니라, 정확한 측정을 위해서는 많은 시간이 소요되는 문제점이 있다. 따라서, 본 연구에서는 ESS용 리튬이차전지 단전지를 전산 모델링 한 후, 펄스 측정법을 적용하여 충전상태에 따른 방전 및 충전시의 직류저항(DC-IR)과 출력을 예측한다. 또한, 두 가지 펄스 측정법인 HPPC (Hybrid Pulse Power Characteristics)와 J-Pulse (JEVS D 713, Japan Electric Vehicle Association Standards)의 결과를 비교 분석한다.

에너지 저장시스템을 위한 슈퍼커패시터 최신 연구 동향 (Recent Research Trends of Supercapacitors for Energy Storage Systems)

  • 손명숙;류준형
    • 청정기술
    • /
    • 제27권4호
    • /
    • pp.277-290
    • /
    • 2021
  • 슈퍼커패시터는 일반 커패시터(축전지, 콘덴서)에 비해 정전용량이 매우 큰 커패시터로 전기화학 커패시터 혹은 울트라 커패시터(ultracapacitor) 라고도 부르는데, 화학반응을 이용하는 배터리와 달리 전극과 전해질 계면의 단순한 이온 이동이나 표면화학반응에 의한 충전현상을 이용한다. 짧은 충전시간(~ 30초), 우수한 출력특성, 반영구적 수명(~ 100,000 cycle), 낮은 유지비용, 빠른 응답특성, 높은 안정성 등을 특징으로 하여, 백업용 전원, 무정전전원장치, 수송 기계 및 스마트 그리드의 고출력 보조 전원 등 급속 충방전이 필요한 전자기기 및 고출력이 요구되는 산업분야에서 활용되고 있다. 태양광과 풍력 같은 불규칙적인 전력원을 활용하는 발전에서 2차 배터리와 함께 에너지저장장치로 구성되어 상대적으로 느린 배터리의 충·방전 특성을 보상하고 배터리 수명연장에 기여하며 시스템의 전체 전력 품질을 향상시킬 수 있다. 본 고에서는 이처럼 에너지저장장치로 다양한 분야에서 활용되고 있는 슈퍼커패시터에 대해, 전극 재료에 따른 에너지 저장 원리 및 메커니즘, 분류를 간략하게 살펴보고, 국내외 제품 연구, 특허, 시장 및 제품 현황을 제시하여 활용성을 검토하고 향후 전망을 살펴보았다. 에너지 저장 소자로 슈퍼커패시터가 관련 산업 수요에 대응하기 위해서는, 고전압 모듈 기술, 고효율 충전, 안전성, 추가적인 성능개선 및 비용경쟁력 등 아직까지 해결해야 할 과제들이 많다.

이차전지의 상태 감시 및 수명 예측 알고리즘 개발 (Development of State of Charge and Life Cycle Evaluation Algorithm for Secondary Battery)

  • 박재범;김병기;송석환;노대석
    • 한국산학기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.369-377
    • /
    • 2013
  • 현재 전기자동차와 신재생에너지전원의 출력안정화에 필수적인 2차전지가 개발되고 있고, 2차전지의 효율적인 운용을 위하여 상태감시 기술과 수명예측 기술이 요구되고 있다. 기존의 2차전지 상태감시 방법으로는 전압과 비중에 의한 충전상태평가 방법 등이 있으나, 이 방법은 온도에 따라 변화되는 전압과 비중의 특성을 고려할 수 없는 한계점을 가지고 있다. 즉, 2차전지의 SOC를 평가하기 위해서는 전지 케이스 내부의 전해액 온도에 따라 달라지는 비중 값을 측정해야 하지만, 대부분의 2차전지는 밀폐형으로 보급되고 있어서 전해액의 상태를 파악하기 어려운 실정이다. 따라서 본 논문에서는 전지내부의 온도를 보정하는 열전달식을 유도함으로 정확한 SOC평가 알고리즘을 제시하였다. 또한 2차전지의 수명 예측 방법으로는 내부저항 측정 또는 잔존 용량 측정 등의 수명 예측 방법들이 있으나, 충 방전상태와 충전 후 방치시간, 사용 환경 등 여러 가지 요인에 의해 2차전지의 수명을 정확하게 판단하기 어렵다. 따라서 상기의 문제점을 해결하기 위해 $20^{\circ}C$로 환산된 비중 값에 대하여 전지의 충 방전에 대한 비중누적 값을 계산함으로 충 방전 사이클을 판정하는 수명예측 알고리즘을 제시하였다. 상기에서 제시한 알고리즘을 바탕으로 시험 장치를 제작하여 다양한 시뮬레이션을 수행한 결과, 기존의 방법에 비하여 본 논문에서 제안한 알고리즘이 정확한 연축전지의 상태감시 및 수명예측에 대한 결과를 얻을 수 있음을 확인하였다.

건식 분쇄 공정으로 Si 입도 제어를 통한 고용량 리튬이온전지 음극 소재의 개발 (Development of High Capacity Lithium Ion Battery Anode Material by Controlling Si Particle Size with Dry Milling Process)

  • 전도만;나병기;이영우
    • 청정기술
    • /
    • 제24권4호
    • /
    • pp.332-338
    • /
    • 2018
  • 현재 리튬이온전지의 음극 소재 활물질로는 흑연이 주로 사용되고 있다. 그러나 흑연의 최대 이론 용량이 $372mA\;h\;g^{-1}$으로 제한되기 때문에 차세대 고용량 및 고에너지 밀도의 리튬이온전지 개발을 위해서는 새로운 음극 소재 활물질이 필요하다. 여러 음극 소재 활물질 중에서 Si의 최대 이론 용량은 $4200mA\;h\;g^{-1}$으로 흑연의 최대 이론 용량보다 약 10배 이상 높은 값을 나타내고 있지만 부피 팽창율이 거의 400%로 크기 때문에 사이클이 진행될수록 비가역 용량이 증가하여 충전 대비 방전 용량이 현저히 감소하는 현상을 나타내고 있다. 이러한 문제점을 해결하기 위한 방법으로 Si 음극 소재 활물질의 입자 크기를 조절하여 기계적 응력 및 반응상의 체적 변화를 감소시켜 사이클 특성을 다소 향상시킬 수 있다. 따라서 Si 입자의 부피 팽창율에 따른 충전 및 방전 용량의 감소를 최소화하기 위해 공정 시간 및 원가 절감이 우수한 건식 방법으로 Si을 분쇄하여 사이클 특성 향상에 관한 연구를 진행 하였다. 본 논문에서는 진동밀을 이용하여 Si을 나노 크기로 제어하고 실험 변수에 따른 재료들의 물리화학적 특성과 전기화학적 특성을 측정하였다.

소결온도 변화와 충전된 리튬이온 전지 LiFePO4 정극에 대한 뫼스바우어 효과 (Mössbauer Effect on LiFePO4 by Changing the Sintering Temperature and as Charged Cathode in Lithium Ion Battery)

  • 김태희;김형상;임현식;유연봉
    • 한국자기학회지
    • /
    • 제17권2호
    • /
    • pp.65-70
    • /
    • 2007
  • 재사용이 가능한 리튬 이온 전지의 대체 양극 후보 물질인 $LiFePO_4$를 합성하고 질소 분위기 하에서 소결온도 $675^{\circ}C,\;750^{\circ}C$$800^{\circ}C$로 30시간 유지하여 합성한 시료에 대한 결정 구조의 양질성 여부를 확인하였고, SEM 사진을 통하여 입자의 크기를 조사하였으며, Mossbauer 분광법으로 소결온도 변화와 1 V 160 mA, 3 V, 40 mA로 3시간 동안 충전한 후 $Fe^{+3}$ 함유량의 변화를 조사하였다. 소결온도의 증가에 따라 완전 방전 상태에서 $Fe^{+3}$의 함량은 증가하였고, $675^{\circ}C$ 소결온도의 시료에서만 충전 전하량의 증가에 따라 $Fe^{+3}$ 이온의 비율이 증가를 관찰하였다. 소결온도가 $800^{\circ}C$인 시료에서의 충전 후 $Fe^{+3}$ 이온의 변화는 관찰할 수 없었다.

자연방전을 고려한 개선된 슈퍼커패시터의 동특성 모델 개발 (Development of the Improved Dynamic Model of the Supercapacitor Considering Self-Discharge)

  • 김상현;이교범;최세완;최우진
    • 전력전자학회논문지
    • /
    • 제14권3호
    • /
    • pp.188-196
    • /
    • 2009
  • 슈퍼커패시터는 전력밀도가 높고 사이클 수명이 길며 깨끗한 특성으로 인해 신재생에너지원의 동특성 보상 및 배터리의 동작시간이나 수명연장을 목적으로 널리 사용되고 있다. 본 논문에서는 개선된 슈퍼커패시터의 동특성 모델을 전기화학적 임피던스 분광법(Electrochemical Impedance Spectroscopy)을 이용하여 개발한다. 개발된 모델은 슈퍼커패시터의 정확한 동적 행동을 예측하거나 특정 충전상태(State-Of-Charge)에서의 정확한 정전용량 값을 계산하는데 사용될 수 있다. 주파수영역에서 개발된 모델은 Matlab/Simulink 시뮬레이션을 위하여 시간영역으로 등가 변환된다. 시뮬레이션 결과는 실험 결과와 일치하였으며, 이를 통해 개발된 모델의 유용함과 정확성을 증명하였다.

$SiO_2$가 유리섬유로 보강된 고분자 겔 전해질의 전기 화학적 특성에 미치는 영향 ([ $SiO_2$ ] Effect on the Electrochemical Properties of Polymeric Gel Electrolytes Reinforced with Glass Fiber Cloth)

  • 박호철;김상헌;전종한;김동원;고장면
    • 전기화학회지
    • /
    • 제4권1호
    • /
    • pp.6-9
    • /
    • 2001
  • 유리섬유(glass fiber cloth, GFC)가 보강제로 사용된 고분자 겔 전해질(polymeric gel electrolytes, PGEs)에 $SiO_2$를 첨가하여 전해질의 전기 화학적 특성을 조사하였다. 가소제로는 Ethylene carbonate(EC) , propylene carbonate(PC), diethyl carbonate(DEC)를, 리튬염으로는 $LiClO_4$를 고분자로는 polyacrylronitrile(PAN)과 poly(vinylidene fluoride-co-hexafluoro propylene)(P(VdF-co-HFP))을 사용하여 $80\~90{\mu}m$의 두께로 전해질을 제조하였다. 제조된 전해질은 모두 상온체서 $10^{-3}S/cm$의 이온 전도도를 나타내었고, 4.8V까지 안정하였다. 리튬금속을 사용하여 제조된 셀의 임피던스 결과에서는 시간이 지남에 따라 모든 전해질이 부동태 피막의 성장으로 계면저항이 증가했으나, $SiO_2$첨가비율에 따라 뚜렷한 차이는 보이지 않았다. $LiClO_2$와 mesophase pitch-based carbon fiber(MCF)를 각각 양극과 음극으로 사용하여 제조된 겔의 임피던스에서는 $SiO_2$가 첨가되지 않은 셀의 옴 저항이 충전, 방전이 진행되는 동안 많은 변화를 보였으며, $SiO_2$가 첨가된 셀의 저항은 거의 변화되지 않았고, 계면의 변화도 적었다. 또한 방전용량에서도 $SiO_2$$20\%$가 첨가된 전해질이 0.2C의 방전속도에132mAh/g의 비 용량을 나타내었고, 2C의 방전속도에서$85\%$의 방전용량을 유지하였다.

리튬 이온 배터리의 충전 상태 추정을 위한 LSTM 네트워크 학습 방법 비교 (Comparison of Learning Techniques of LSTM Network for State of Charge Estimation in Lithium-Ion Batteries)

  • 홍선리;강모세;김건우;정학근;백종복;김종훈
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1328-1336
    • /
    • 2019
  • 안전하고 최적의 배터리 성능을 유지하기 위해 정확한 충전상태(SOC) 추정 기술이 필수적이다. 본 논문에서는 기존의 전류적산 방법이 가지고 있는 문제를 해결하기 위해 시간 종속성을 가지는 인공지능 기반의 LSTM을 이용한 SOC 추정 방법을 적용하였다. 훈련과 검증에 필요한 데이터는 전기적 실험을 통해 일정 크기로 방전된 전류, 전압, 온도를 수집하였고 학습을 위한 입력데이터의 질을 향상시키기 위해 데이터 전처리를 수행하였다. 또한, LSTM 모델의 구조 및 하이퍼파라미터 설정에 따른 학습 능력과 SOC 추정 성능을 비교하였다. 학습한 모델은 UDDS 프로파일을 통해 검증하였으며, RMSE 0.82%, MAX 2.54%의 추정 정확도를 달성하였다.

하이브리드/전기 자동차용 수냉식 배터리 셀의 냉각성능에 관한 수치 해석적 연구 (Numerical Investigation of Cooling Performance of Liquid-cooled Battery in Electric Vehicles)

  • 권화빈;박희성
    • 대한기계학회논문집B
    • /
    • 제40권6호
    • /
    • pp.403-408
    • /
    • 2016
  • 리튬 이온 배터리는 높은 에너지 밀도와 안정적인 충전/방전 특성을 내재하고 있어 하이드리드 및 전기자동차에 보편적으로 사용된다. 리튬 이온 배터리의 효율은 배터리 자체의 온도 특성에 직접적인 영향을 받으므로, 열을 효율적으로 냉각하는 기술이 요구된다. 본 논문에서는 수냉식 배터리 냉각 시스템의 냉각 성능과 펌프 소모동력에 관한 전산유체해석을 수행하였다. 이를 위해 배터리 셀의 냉각수 유량 및 냉각 채널의 특성에 따른 냉각 성능을 수치적으로 예측하였다. 이를 바탕으로 250개 배터리 셀을 기준으로 유량 및 차압에 의한 소모동력을 계산하였다. 이러한 연구는 차세대 하이브리드 및 전기자동차의 시간에 따른 배터리의 온도 변화 및 충/방전 효율 최적화 기술에 적용할 수 있는 기초 연구로 활용될 수 있을 것으로 기대된다.