• Title/Summary/Keyword: 방전시간

Search Result 541, Processing Time 0.026 seconds

Research on the magnetic confinement of laser-induced plasma (레이저 유도 플라즈마에 대한 자기장 감금의 영향 연구)

  • Eunjoo Hyeon;Yong H. Ghym
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.38-45
    • /
    • 2024
  • Most previous works about magnetic effect on plasma emission were interested in emission enhancement which was useful to various fields of plasma application. On the contrary, the following work is interested in plasma dissipation rarely reported in prior researches and expected to help advance plasma-controlling technique. Nd:YAG laser (1064 nm, 6 ns) was focused on three kinds of metals (Al, Ti and STS) and air. The permanent magnetic field (0.4 T) of Nd2Fe14B magnet was provided passing throughout laser-induced plasma. The spectra of plasma in both the presence and absence of the magnetic field were observed with varying laser power and delay time of the spectrograph. In this work it was uniquely discovered that the plasma always dissipated easily in the presence of magnetic field irrespective of the laser power. With the O I(777.42 nm)-line shape function fitted to Lorentz profile, its half width at half maximum (HWHM) was evaluated to verify that the magnetic field increased the plasma density. It is concluded that magnetic field facilitates not only plasma emission enhancement but also plasma dissipation, increasing recombination rate which is proportional to plasma density.

Surface Modification of TiO2 Thin Films by N2 Atmospheric Plasma and Evaluation of Photocatalytic Activity (질소 상압플라즈마를 이용한 TiO2 박막의 표면개질 및 광활성 평가)

  • Lim, Gyeong-Taek;Kim, Kyung Hwan;Park, Jun;Kim, Kyoung Seok;Park, Yu Jeoung;Song, Sun-Jung;Kim, Jong-Ho;Cho, Dong Lyun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.402-406
    • /
    • 2009
  • $TiO_2$ thin films were surface-modified with atmospheric plasma and their photocatalytic activities were evaluated. The films were deposited on glass plates by dip-coating in a $TiO_2$ sol-gel solution and sintered at various temperatures for various times. Nitrogen plasma was used for the modification and the experiments were carried out varying operational parameters such as discharge power and treatment time. Photocatalytic activity was evaluated based on the degradation efficiency of methylene blue (MB) under irradiation of UV-A and fluorescent light. According to XPS analysis, a little amount of nitrogen was found to be doped in the film surface after the modification. As a result, photocatalytic activity increased under irradiation of UV-A and fluorescent light, especially fluorescent light.

Mössbauer Effect on LiFePO4 by Changing the Sintering Temperature and as Charged Cathode in Lithium Ion Battery (소결온도 변화와 충전된 리튬이온 전지 LiFePO4 정극에 대한 뫼스바우어 효과)

  • Kim, T.H.;Kim, H.S.;Im, H.S.;Yu, Y.B.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.65-70
    • /
    • 2007
  • In this paper, we composed the $LiFePO_4$ for the reversible use as the replacement material of the Li ion batteries and confirmed the good quality of the structure of the samples with the sintering temperature $675^{\circ}C,\;750^{\circ}C,\;and\;800^{\circ}C$ for 30 hours at nitrogen atmosphere. We also investigated the size of the particles through SEM picture and the change of the sintering temperature and the $Fe^{+3}$ content after charging the materials with 1 V, 160 mA and 3 V, 40 mA for 3 hours by Mossbauer spectroscopy. Also we can observe the increase on the $Fe^{+3}$ content at the charge condition and the increase of the amount ratio of the $Fe^{+3}$ ion only in sintering temperature $675^{\circ}C$ according to the increase of the electric charge. We cannot observe the change of the $Fe^{+3}$ ion in sintering temperature $800^{\circ}C$ after charging.

Electrochemical Performances of Acid-Treated and Pyrolyzed Cokes According to Acid Treatment Time (산처리 시간별 산화 코크스와 열분해 코크스의 전기화학적 거동)

  • Kim, Ick-Jun;Yang, Sunhye;Jeon, Min-Je;Moon, Seong-In;Kim, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.407-412
    • /
    • 2008
  • As an activation procedure, in this study, the oxidation treatment of needle cokes with a dilute nitric acid and sodium chlorate $(NaClO_3)$, combined with heat treatment, was attempted. The structures of acid-treated and pyrolyzed coke were examined with XRD, FESEM, elemental analyzer, BET, and Raman spectroscopy. The behavior of double layer capacitance was investigated with the analysis of charge and discharge. The structure of needle coke treated with acid was revealed to a single phase of (001) diffraction peak after 24 h. On the other hand, thecoke oxidized by heat treatment was reduced to a graphite structure of (002) at $300^{\circ}C$. The distorted graphene layer structure, derived from the process of oxidation and reduction of the inter-layer, makes the pores by the electric field activation at the first charge, and generates the double layer capacitance from the second charge. The cell using pyrolyzed coke with 24 h acid treatment and $300^{\circ}C$ heat treatment exhibited the maximum capacitance per weight and volume of 33 F/g and 30 F/mL at the two-electrode system in the potential range of 0~2.5 V.

Synthesis and Characteristics of Partially Fluorinated Poly(vinylidene fluroide)(PVDF) Cation Exchange Membrane via Direct Sulfonation (직접술폰화반응에 의한 부분불소화 Poly(vinylidene fluroide)(PVDF) 양이온교환막의 합성 및 특성)

  • Kang, Ki Won;Hwang, Taek Sung
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.406-414
    • /
    • 2015
  • In this study, partially fluorinated cation exchange membranes were prepared by direct sulfonation of Poly(VDF-co-hexafluoropropylene) copolymers (PVDF-co-HFP) followed by a casting method for application in the Membrane capacitive deionization (MCDI). The structure of sulfonated PVDF-co-HFP (SPVDF) was confirmed by Fourier-transform infrared (FT-IR) and $^1H$ Nuclear magnetic resonance ($^1H$ NMR) analysis. For quantitative analysis of the chemical composition, the X-ray Photoelectron Spectroscopy (XPS) was used. The membrane properties such as water uptake, ion exchange capacity and electrical resistance were measured. It was suggested that the optimum direct sulfonation condition of PVDF-co-HFP ion exchange membranes was $60^{\circ}C$ and 7 hours for temperature and duration of sulfonation, respectively. The water uptake of the SPVDF ion exchange membrane was 21.5%. The ion exchange capacity and electrical resistance were 0.89 meq/g and $3.70{\Omega}{\cdot}cm^2$, respectively. It was investigated that if it is feasible to apply these membranes in MCDI at various cell potentials (0.9~1.5 V) and initial flow rates (10~40 mL/min). In the MCDI process, the maximum salt removal rate was 62.5% in repeated absorption-desorption cycles.

The Research On the Energy Storage System Using SuperCapacitor (슈퍼커패시터를 적용한 에너지 저장시스템 설계에 관한 연구)

  • Kim, IL-Song
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.11
    • /
    • pp.215-222
    • /
    • 2018
  • In this paper, the research on the energy storage system adapting super-capacitor has been performed. The most advanced features compared to the conventional lead-acid battery systems is that it can obtain high power capability due to the super capacitor power characteristics. The suggested system can attain high power in short times and achieve high power quality improvements. The application areas are power quality improvement system, motor start power which requires high power during transient times. The energy conversion system consists of bi-directional converter and inverter and advantages of high speed, high power charging and discharging performances. The design steps for the two loop controller of the bi-directional inverter are suggested and verified by the experiment and manufacturing. The two loop controller design starts from linearized transfer function which is calculated from the state averaging model including state decoupling method. The current controller requirements are 20% overshoot and settling time and voltage controller are no overshoot and settling time which is 10 times longer than current controller. The design is verified from the step input response. The designed controllers have unity power factor characteristics and thus can improve the power quality of the grid. It also has fast response time and zero steady state error.

Quality characteristics of rice noodles treated with cold plasma (저온 플라즈마 처리한 쌀국수의 품질 특성)

  • Kim, Hyun-Joo;Lee, Byong Won;Baek, Ki Ho;Jo, Cheorun;Kim, Jae-Kyung;Lee, Jin Young;Lee, Yu-Young;Kim, Min Young;Kim, Mi Hyang;Lee, Byoungkyu
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.560-563
    • /
    • 2020
  • Cold plasma has been applied to improve quality of food product; however, studies on its effects on microbial and physicochemical qualities of rice noodles are rarely conducted. In this study, changes in the quality characteristics of rice noodles treated by cold plasma were determined. Cold plasma was generated in a square-shaped plastic container (250 W, 15 kHz, ambient air), and dielectric barrier discharge plasma treatments were applied to rice noodle samples for 0, 10, or 20 min. Rice noodles inoculated with either Bacillus cereus or Escherichia coli O157:H7 were subjected to plasma treatment for 20 min, and the approximate bacterial count reduction were 4.10 and 2.75 log CFU/g, respectively. The Hunter color values of the sample were increased after cold plasma treatment. Peroxide values and thiobarbituric acid reactive substance (TBARS) were increased with an increase in cold plasma treatment time. Futhermore, lipid oxidation was enhanced. Although further studies are warranted to evaluate changes in chemical qualities, such as lipid oxidation of rice noodles, induced by cold plasma, the results suggest that cold plasma can improve the microbial and physical qualities of rice noodles.

Effect of Atmospheric Pressure Plasma on the Quality of Commercially Available Sunsik (대기압 플라즈마가 선식의 품질 특성에 미치는 영향)

  • Kim, Hyun-Joo;Woo, Koan Sik;Jo, Cheorun;Lee, Seuk Ki;Park, Hye Young;Sim, Eun-Yeong;Won, Yong-Jae;Lee, Sang-Bok;Oh, Sea-Kwan
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.5
    • /
    • pp.375-379
    • /
    • 2016
  • Atmospheric pressure plasma (APP) was applied to examine microbial safety and qualities of commercial Sunsik. APP was generated in a square-shaped plastic container (250 W, 15 kHz, ambient air) and dielectric barrier discharge plasma treatment was applied for periods of 0, 5, 10, and 20 minutes. The total aerobic bacterial count in the control was 4.44 log CFU/g. Under plasma treatment for 20 minutes, Sunsik samples inoculated with Bacillus cereus, B. subtilis, and Escherichia coli O157:H7 resulted in a reduction of bacterial counts by approximately 2.20, 2.22, and 2.52 log CFU/g, respectively. The pH of the sample was found to decrease after APP treatment. Although hunter color $L^*$ of Sunsik increased, $a^*$ and $b^*$ value decreased as a result of APP. Increasing the APP time also enhanced the peroxide value. Further, sensory evaluation revealed that APP decreased color, flavor, taste and overall acceptability. The results of this study indicated that APP treatment improved the microbial quality of Sunsik, although further studies should be conducted to reduce the deterioration of sensory quality induced by APP.

Synthesis and Electrochemical Performance of Ni-rich NCM Cathode Materials for Lithium-Ion Batteries (리튬이온전지 양극활물질 Ni-rich NCM의 합성과 전기화학적 특성)

  • Kim, Soo Yeon;Choi, Seung-Hyun;Lee, Eun Joo;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.4
    • /
    • pp.67-74
    • /
    • 2017
  • Layered Ni-rich NCM cathode materials $Li[Ni_xCo_{(1-x)/2}Mn_{(1-x)/2}]O_2$ ($x{\geq}0.6$) have advantages of high energy density and cost competitive over $LiCoO_2$. The discharge capacity of NCM increases proportionally to the Ni contents. However, there is a problem that it is difficult to realize the stable electrochemical performance due to cation mixing. In this study, synthesis conditions for the layered Ni-rich NCMs are investigated to achieve deliver the ones having good electrochemical performances. Synthesis parameters are atmosphere, lithium source, synthesis time, synthesis temperature and Li/M (M=transition metal) ratio. The degree of cation mixing gets worse as the Ni content is increased from $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ (NCM6) to $Li[Ni_{0.8}Co_{0.1}Mn_{0.1}]O_2$ (NCM8). It is confirmed that higher level of cation mixing affects negatively on the electrochemical performance of NCMs. Optimum synthesis conditions are explored for NCMx (x=6, 7, 8) in order to reduce the cation mixing. Under optimized conditions for three representative NCMx, a high initial discharge capacity and a good cycle life are obtained for $180mAh{\cdot}g^{-1}$, 96.2% (50 cycle) in NCM6, $187mAh{\cdot}g^{-1}$, 94.7% (50 cycle) in NCM7, and $201mAh{\cdot}g^{-1}$, 92.7% (50 cycle) in NCM8, respectively.

Optimization of Characteristic Change due to Differences in the Electrode Mixing Method (전극 혼합 방식의 차이로 인한 특성 변화 최적화)

  • Jeong-Tae Kim;Carlos Tafara Mpupuni;Beom-Hui Lee;Sun-Yul Ryou
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • The cathode, which is one of the four major components of a lithium secondary battery, is an important component responsible for the energy density of the battery. The mixing process of active material, conductive material, and polymer binder is very essential in the commonly used wet manufacturing process of the cathode. However, in the case of mixing conditions of the cathode, since there is no systematic method, in most cases, differences in performance occur depending on the manufacturer. Therefore, LiMn2O4 (LMO) cathodes were prepared using a commonly used THINKY mixer and homogenizer to optimize the mixing method in the cathode slurry preparation step, and their characteristics were compared. Each mixing condition was performed at 2000 RPM and 7 min, and to determine only the difference in the mixing method during the manufacture of the cathode other experiment conditions (mixing time, material input order, etc.) were kept constant. Among the manufactured THINKY mixer LMO (TLMO) and homogenizer LMO (HLMO), HLMO has more uniform particle dispersion than TLMO, and thus shows higher adhesive strength. Also, the result of the electrochemical evaluation reveals that HLMO cathode showed improved performance with a more stable life cycle compared to TLMO. The initial discharge capacity retention rate of HLMO at 69 cycles was 88%, which is about 4.4 times higher than that of TLMO, and in the case of rate capability, HLMO exhibited a better capacity retention even at high C-rates of 10, 15, and 20 C and the capacity recovery at 1 C was higher than that of TLMO. It's postulated that the use of a homogenizer improves the characteristics of the slurry containing the active material, the conductive material, and the polymer binder creating an electrically conductive network formed by uniformly dispersing the conductive material suppressing its strong electrostatic properties thus avoiding aggregation. As a result, surface contact between the active material and the conductive material increases, electrons move more smoothly, changes in lattice volume during charging and discharging are more reversible and contact resistance between the active material and the conductive material is suppressed.