• Title/Summary/Keyword: 방전시간

Search Result 541, Processing Time 0.032 seconds

Manganese Doped LiFePO4 as a Cathode for High Energy Density Lithium Batteries (고에너지밀도 리튬전지를 위한 망간이 첨가된 LiFePO4 양극재료)

  • Kim, Dul-Sun;Kim, Jae-Kwang;Ahn, Jou-Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.157-161
    • /
    • 2013
  • Porous $LiMn_{0.6}Fe_{0.4}PO_4$ (LMFP) was synthesized by a sol-gel process. Uniform dispersion of the conductive carbon source throughout LMFP with uniform carbon coating was achieved by heating a stoichiometric mixture of raw materials at $600^{\circ}C$ for 10 h. The crystal structure of LMFP was investigated by Rietveld refinement. The surface structure and pore properties were investigated by SEM, TEM and BET. The LMFP so obtained has a high specific surface area with a uniform, porous, and web-like nano-sized carbon layer at the surface. The initial discharge capacity and energy density were 152 mAh/g and 570 Wh/kg, respectively, at 0.1 C current density, and showed stable cycle performance. The combined effect of high porosity and uniform carbon coating leads to fast lithium ion diffusion and enhanced electrochemical performance.

Performance Analysis of Single-phase SRM Drive System with Single-stage Power Factor Correction (1단구조방식의 PFC회로를 갖는 단상 SRM 구동시스템의 특성해석)

  • Lee, Dong-Hee;Lee, Jin-Kuk;An, Young-Ju;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.328-339
    • /
    • 2006
  • In this paper the characteristic analysis of a single-phase switched reluctance motor (SRM) drive system with power factor correction (PFC) circuit is presented. The SRM is a low cost, simple and has a good high speed performance. The SRM drive with diode rectifier and filter capacitor has a low power factor because of short switch on time of capacitor. A novel switching topologic is presented to improve power factor and reduce torque ripple based on analysis of PFC circuit. Accordingly the SRM drive system with PFC circuit is also presented. Through the numerical analysis of the system, the toque ripple, power factor and efficiency with the change of rotary speed, load torque and capacity of the capacitor are achieved and compared with actual measured value.

Fault-tree based reliability analysis for bidirectional converter (고장나무를 이용한 양방향 컨버터의 신뢰성 분석)

  • Heo, Dae-ho;Kang, Feel-soon
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.254-260
    • /
    • 2019
  • The failure rate of bidirectional dc-to-dc converter is predicted through the failure mode and effect analysis (FMEA) and the fault-tree analysis (FTA) considering the operational risk. In order to increase the driving voltage of the electric vehicle efficiently, the bidirectional converter is attached to the front of the inverter. It has a boost mode for discharging battery power to the dc-link capacitor and a buck mode for charging the regenerative power to the battery. Based on the results of the FMEA considering the operating characteristics of the bidirectional converter, the fault-tree is designed considering the risk of the converter. After setting the design parameters for the MCU for the electric vehicle, we analyze the failure rate of the capacitor due to the output voltage ripple and the inductor component failure rate due to the inductor current ripple. In addition, we obtain the failure rate of major parts according to operating temperature using MIL-HDBK-217F. Finally, the failure rate and the mean time between failures (MTBF) of the converter are predicted by reflecting the part failure rate to the basic event of the fault-tree.

Electrochemical Performance of PFO Pitch coated Natural Graphite using Dry Speed Mixer (건식 스피드 믹서를 이용한 PFO 피치 코팅 천연 흑연의 전기화학적 성능)

  • Youn, Jae Woong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.410-416
    • /
    • 2021
  • To improve the capacity and stability of natural graphite, the electrochemical performances were investigated by using the prepared natural graphite coated with petroleum pitch for anode materials. The pitch coated natural graphite was prepared using a dry speed mixer by adjusting the rotation speed of the mixer, time, composition of graphite and softening point of the pitch. The physical properties of the anode material were analyzed using SEM, TEM, and PSD. The electrochemical performances were investigated by cycle, C-rate, EIS and CV test. When the pitch coated natural graphite was tested in the condition of 9000 RPM, 10 wt%, 2 h, and softening point of 150 ℃, it showed the highest capacity of 324.5 mAh/g at 0.1 C and a capacity retention rate of 98.9% after 50 cycles. In the test for evaluating rate performance, the capacity retention rate (5 C/0.1 C) was 80.3% and was improved by about 1.7 times over the pristine natural graphite.

Design of Simulated Photovoltaic Power Streetlight for Education using Renewable Energy Utilization and Storage Function (신재생에너지 활용 및 저장기능을 이용한 교육용 모의 태양광발전 가로등 설계)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.137-142
    • /
    • 2021
  • A Photovoltaic power streetlight is a system that uses solar energy to charge a secondary battery and then uses it for night lighting through a lamp, and can be configured as a standalone or grid-connected type by installing an LED streetlight at the load end. The energy generated through the solar cell module can be charged to the secondary battery through the charge/discharge control device, and then the LED street light can be turned on and off by comparing the power generation voltage and the charging voltage according to the monitoring of solar radiation, or by setting a specific time after sunset or sunrise. Based on these contents, this paper designed and manufactured a simulated solar power streetlight for education using new and renewable energy utilization and storage functions. Using these educational equipment, students can 1) understand the flow of energy change using renewable energy including sunlight as electric energy, 2) understand new and renewable energy, and cultivate basic design and manufacturing application power of related products, 3) The use of new and renewable energy through power conversion and strengthening of practical training and analysis through hardware production can be instilled.

Effects of Operating Parameters on Tetrafluoromethane Destruction by a Waterjet Gliding Arc Plasma (워터젯 글라이딩 아크 플라즈마에 의한 사불화탄소 제거에 미치는 운전변수의 영향)

  • Lee, Chae Hong;Chun, Young Nam
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • Tetrafluoromethane ($CF_4$) has been used as the plasma etching and chemical vapor deposition (CVD) gas for semiconductor manufacturing processes. However, the gas need to be removed efficiently because of their strong absorption of infrared radiation and the long atmospheric lifetime which cause global warming effects. A waterjet gliding arc plasma system in which plasma is combined with the waterjet was developed to effectively produce OH radicals, resulting in efficient destruction of $CF_4$ gas. Design factors such as electrode shape, electrode angle, gas nozzle diameter, electrode gap, and electrode length were investigated. The highest $CF_4$ destruction of 93.4% was achieved at Arc 1 electrode shape, $20^{\circ}$ electrode angle, 3 mm gas nozzle diameter, 3 mm electrode gap and 120 mm electrode length.

Vehicle Maintenance Support System using CAN Communication (CAN 통신을 이용한 자동차 유지관리 지원 시스템)

  • Jiwon, Park;Seunghong, Han;Jaehyun, Park
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.6
    • /
    • pp.59-68
    • /
    • 2022
  • We propose the vehicle maintenance support system to alarm consumable replacement reminders to the vehicle owner. Since the delayed replacement of the consumables makes the condition of the vehicle worse, it is crucial to replace consumables in a recommended period. The vehicle maintenance support system alarms the replacement time, which is set by the vehicle owner, based on the mileage of the installed vehicle. It integrates speed information acquired from the Controller Area Network interface for communication between Electronic Control Unit and instrument panel, exposed at the On Board Diagnostics-II port, to calculate the vehicle mileage. By this, there is no additional wiring required for the system. We verify the system has only 0.28% error by comparing the mileage on the system with the instrument cluster on the vehicle. It automatically enters low-power mode consuming 15mW, which is a negligible amount for the typical conditions of the car, to prevent the vehicle battery from discharging when the ignition is off.

A study on the synthesis of a cathode active material precursor from a waste lithium secondary battery (폐리튬이차전지 스크랩 재활용을 통한 양극활물질 전구체 합성 연구)

  • Kim, BoRam;Kim, Dae-Weon;Kim, Tae-heon;Lee, Jae-Won;Jung, Hang-chul;Han, Deokhyun;Jung, Soo-Hoon;Yang, Dae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.2
    • /
    • pp.61-67
    • /
    • 2022
  • A metal salt solution was prepared from valuable metals (Ni, Co, Mn) recovered from a scrap of waste lithium secondary batteries, and an NCM811 precursor was synthesized from the solution. The effect on precursor formation according to reaction time was confirmed by SEM, PSA, and ICP analysis. Based on the analysis results, the electrochemical properties of the synthesized NCM811 precursor and the commercial NCM811 precursor were investigated. The Galvano charge-discharge cycle, rate performance, and Cycle performance were compared, and as a result, there was no significant difference from commercial precursors.

Introduction of Small-Scale Pumped-Storage Generation Technology to solve the Problem of Renewable Energy Volatility (재생에너지 변동성 문제 해결을 위한 소규모 양수발전 활용 기술 소개)

  • Tae Gyu Hwang;Jong Seok Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.78-78
    • /
    • 2023
  • 기후변화 위기는 유사 이래 인류가 직면한 가장 큰 도전으로 범정부적 글로벌 문제로서 이를 해결하기 위한 다양한 정책들이 범국가 차원 혹은 세계적 기업들에 의해 발표 혹은 시행되고 있다. 이러한 기후변화위기와 탄소배출 저감을 위한 대표적인 대응 방안 중 하나가 바로 재생에너지의 확대·보급 노력이다. 그러나 재생에너지는 날씨와 계절 등 자연환경의 영향을 받는 에너지원으로써 간헐성, 변동성을 가지므로, 시간대별 발전량 예측과 전력공급 안정성에 어려움이 있다. 이러한 문제를 해결하기 위하여 재생에너지 발전은 석탄화력 발전과 달리 전력의 수요와 공급의 균형을 위한 에너지저장장치(Energy Storage System, 이하 ESS)가 있어야 한다. ESS는 전력공급 안정성 향상과 전력 수급의 유연성을 제공하는 장점이 있지만, 초기 설치비용이 높은 단점이 있다. 특히, 배터리 기반 ESS의 경우 높은 구축 비용과 한정적인 충. 방전수명으로 인하여 대용량 ESS로써의 역할 수행에는 분명한 한계가 있다. 하지만 재생에너지와 연계한 ESS로 양수발전댐을 활용할 경우 장주기, 장수명, 대용량 에너지 저장에 매우 합리적인 수단으로 판단되었다. 다만, 양수발전 댐 구축에는 토목공사로 인한 환경 훼손이라는 문제점도 존재한다. 본 고에서는 지역 분산형 소규모 양수발전(Pumped Storage Hydropower, 이하 PSH)댐 구축 및 운영기술 개발을 통해 지역 전력공급과 전력 수급을 조절하면서 변동성 재생에너지를 안정적으로 사용할 수 있는 방안을 소개하고자 한다. 특히, 해당 기술은 지역별 특성에 맞춰 유연하게 설치할 수 있으며, 대규모 토목공사로 의한 환경적 부작용을 최소화할 수 있다. 또한 소규모 PSH는 지역의 저수지 및 수자원을 이용하여 에너지를 저장함으로써 변동성 큰 재생에너지의 유연화 대응과 동시에 안정적인 에너지 공급이 가능하다. 본 고에서는 재생에너지의 확대·보급에 따른 문제점과 대표적 ESS 기술들을 분석·소개한다. 지역분산형 소규모 PSH 기술개발 연구기획 내용 소개를 통하여 전력 생산 및 공급의 탈중앙화를 달성하고, 지역별 변동성 재생에너지의 안정적 활용과 지역 전력공급 특성 및 전력 수급에 대응할 수 있는 방안을 제안하고자 한다.

  • PDF

Formation of Chalcophanite and Todorokite from the Hydrothermal Reaction of Zn-doped δ-MnO2 (Zn 도핑 된 δ-MnO2의 수열반응을 통한 chalcophanite 및 todorokite 결정 생성 및 성장)

  • Haesung Jung
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.162-167
    • /
    • 2023
  • Diverse structures of Mn oxides in natural and engineered systems occur from the transformation of δ-MnO2, the most common crystalline phase of nucleated Mn oxides, to other structures via redox reactions, adsorption of metals, etc. Recently, together with emerging interests of Zn-based rechargeable battery systems, which use Mn oxides as a cathode, the transformation and recrystallization of Mn oxides have garnered interests. Here, using hydrothermal reaction of Zn-doped δ-MnO2, the formation of todorokite and chalcophanite is observed. When the concentration of doped Zn increases, the formation of chalcophanite is dominant, but occurs slower than that of the lower concentration of doped Zn. This study will provide a new understanding of the effect of Zn on the recrystallization process of Mn oxides during redox cycles in energy storage systems and environmental systems.