• Title/Summary/Keyword: 방어기작

Search Result 117, Processing Time 0.031 seconds

Fine structural Changes in the Ele Epidermis According to Sea Water Adaptation. I Epithelial Cell (염분적응에 따른 뱀장어 표피의 미세 구조적 변화 I . 상피세포)

  • 박인식;김진정조운복박상옥
    • The Korean Journal of Zoology
    • /
    • v.38 no.1
    • /
    • pp.26-37
    • /
    • 1995
  • 뱀장어, Anguilla joponicu의 표피를 구성하는 주종 세포인 상피세포는 80남 정도의 많은 당김세사를 함유하고 있어서 표피의 골격 유지에 중요한 역할을 하고 있다 회유행동 특성에 의해. 성숙된 뱀장어는 바다로 나가게 되고 표피는 급격한 환경변화를 서게 되는데 그 현상들을 살펴보면 먼저 상해반응으로 세포 내의 파립 형질내세망의 내강이 확장되는 현상과 다양한 크기의 공포의 증가로 인해 상피세포들 사이의 공간이 확장되며 일부 세포에서는 괴사 또는 변성되는 형태인 다층층판구조를 갖기도 한다. 이에 대한 능동적 대처로 부착반쪽으로 모이는 당김세사들이 일정한 방향성을 갖게 되며, 상피세포 사이의 연접부위에 부착반의 수가 증가되며 미토콘드리아. 형질내세망 등 세포소기 관이 발달되고, 분비과립의 증가 등 분비양상이 증가되고, 능동적인 염배출과 연관된 핵상부의 중앙축을 따라 미토콘드리아 및 과립 형질내세망이 풍부한 세포도 나타났다. 이와 같은 변화는 염분농도의 증가에 따른 환경적요인에 의해 일어나는 상피세포의 기능적 방어기작이라고 사료된다.

  • PDF

Purification and antibacterial effect of lysozyme from flounder, Paralichthys olivaceus (양식넙치로 부터의 Lysozyme 정제와 어류병원성 세균에 대한 정균작용)

  • Kim, Jin-Woo;Park, Soo-Il;Chun, Seh-Kyu
    • Journal of fish pathology
    • /
    • v.5 no.2
    • /
    • pp.87-92
    • /
    • 1992
  • Lysozymes were isolated and purified from various organs of cultured flounder by using chitin-coated cellulose column chromatography. The molecular weights of them were compared with each other in 15% SDS-PAGE gels. The result showed that all lysozymes isolated from various organs of flounder had the same molecular weight of about 14000. To clarify the role of lysoryme as a body defence, the antibacterial activities of flounder lysozyme on seven bacterial pathogens, five Gram-negative and two Gram-positive species, were investigated. The lysozyme had substancial antibacterial activity on four strains, two Gram-negative and two Gram-positive species. These suggest that flounder lysozyme plays a role in body defence against both Gram-negative and Gram-positive bacterial pathogens.

  • PDF

Identification of Antiviral-related Genes Up-regulated in Response to Bombyx mori Nucleopolyhedrovirus (누에로부터 핵다각체병 바이러스 방어관련 유전자 정보 분석)

  • Goo, Tae-Won;Hong, Sun-Mee;Kim, Sung-Wan;Choi, Kwang-Ho;Kim, Seong-Ryul;Park, Seung-Won;Kang, Seok-Woo;Yun, Eun-Young
    • Journal of Sericultural and Entomological Science
    • /
    • v.50 no.2
    • /
    • pp.53-62
    • /
    • 2012
  • Silkworm larvae often suffer from viral infections causing heavy losses to the economy of silk industry. Insects exhibit both humoral and cellular immune responses that are effective against various pathohens like bacteria, fungi, protozoa, etc., but no insect immune responses is effective against viral infection. To obtain genes related to insect antiviral immunity from Bombyx mori, the cDNA library was constructed from B. mori nucleopolyhedrovirus (BmNPV)-infected B. mori. From the cDNA library, we selected 411 differentially expressed clones, and the 5' ends of the inserts were sequenced to generate ESTs. In this work, 135 unigenes were generated after the assembly of 411 differentially expressed clones ESTs. Of these 135 unigenes, we selected 109 antiviral response-related candidates except 26 clones that high similarity with genes derived from BmNPV. Among 109 unigenes, a total of 80% had significant matches to genes from other organisms in the database, wheres 20% of the unigenes had not matched in the database. Functional groups of these sequences with matches in database were constructed according to their putative biological function. Three largest categories were control of cellular oraganization (52%), metabolism (20%), and protein fate (10%). The genetic information reported in this study will provide more information about antiviral-related genes in silkworms.

In Vitro Antifungal Activity of HTI Isolated from Oriental Medicine, Hyungbangjihwang-tang (형방지황탕으로부터 분리된 HTI의 항진균활성에 대한 연구)

  • Sung, Woo-Sang;Seu, Young-Bae;Lee, Dong-Gun
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.3
    • /
    • pp.273-279
    • /
    • 2009
  • Hyungbangjihwang-Tang (HT), an Oriental herbal formula, has been known to play a role which helps to recover vigor of human in the Orient. In this study, antifungal substance (HTI) was purified from the ethyl-acetate extracts of HT by using $SiO_2$ column chromatography and HPLC, and the antifungal effects of HTI and its mode of action were investigated. By using a broth micro-dilution assay, the activity of HTI was evaluated against fungi. HTI showed antifungal activities without hemolytic effect against human erythrocytes. To confirm antifungal activity of HTI, we examined the accumulation of intracellular trehalose as stress response on toxic agents and effect on dimorphic transition in Candida albicans. The results demonstrated that HTI induced the accumulation of intracellular trehalose and exerted its antifungal effect by disrupting the mycelial forms. To understand its antifungal mode of action, cell cycle analysis was performed with C. albicans, and the results showed HTI arrested the cell cycle at the S phase in yeast. The present study indicates that HTI has considerable antifungal activity, deserving further investigation for clinical applications.

Molecular cloning and characterization of metallothionein cDNA gene in channel catfish (챠넬메기의 metallothionein cDNA 유전자의 cloning 및 그 특성에 관한 연구)

  • Lee, In-Jung;Song, Young-Hwan
    • Journal of fish pathology
    • /
    • v.5 no.2
    • /
    • pp.143-152
    • /
    • 1992
  • Metallothionein is an essential and common protein to regulate the intracellular concentration of heavy metals, which exist in most organisms from bacteria to vertebrates. Although the detailed function of metallothianein has not been fully identified until yet, it may be involoved in the cellular protection against the heavy metal toxicity and in the global regulation of several other genes and the expression of metalloproteins. We have cloned the full cDNA clone of metallothionein gene in Channel Catfish by Reverse Transcriptase-Polymerase Chain Reaction(RT-PCR) starting from poly(A)-containing mRNAs. All PCR fragments have been subcloned into EcoRV site of pBluescript SK+ and dT-tailed at Smal site of pUC19, then PCR products are recovered by the double digestion of recombinant plasmids wiht EcoRI and HindIII, which are adjacent to EcoRV site in multicloning sites or by rapid PCR screening. The nucleotide sequence analysis of pMT150(one of the PCR clones) showed high homology with several other piscine metallothionein cDNA genes.

  • PDF

Mechanism of Stress-dependent Structural Change of Yeast Prx (Yeast Prx의 스트레스의존 구조적 변화의 기작)

  • Kang, Ji-Seoun;Cheong, Gang-Won
    • Applied Microscopy
    • /
    • v.35 no.4
    • /
    • pp.16-23
    • /
    • 2005
  • Peroxiredoxins (Prxs) are a superfamily of thiol-specific antioxidant proteins present in all organism and involved in the hydroperoxide detoxification of the cell. To determine the structural organization of yeast-Prx, electron microscopic analysis was performed. The average images of yeast-Prxs revealed three different structure, i.e. spherical-shaped structure, ring-shaped structure and irregularly-shaped small particles. In order to analyze the conformational change of yeast-Prx by reduction and oxidation, Prxs were subjected to DTT and $H_2O_2$. In presence of DTT, yeast-Prx showed a high tendency to form a decamer. However, they changed into dimeric or spherical structure in the oxidized state. Here we also show ionic interaction between dimeric subunits is primarily responsible for yeast-Prx oligomerization.

Protective Effects of Vitamin C against Genomic DNA Damage Caused by Genotoxicants (유전독성물질의 유전체 손상 작용에 대한 Vitamin C의 방호효과)

  • Yu, Gyeong Jin;Lee, Chun Bok
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.963-969
    • /
    • 2013
  • Although it is popularly believed that vitamin C protects cells from various genotoxicants, the degrees and mechanisms of itsprotective actions are not fully understood. In this study, vitamin C's protective effects against various genotoxicants were quantified, together with subsequent analyses on the mechanisms of these protective effects. Comet assay was employed to measure the degree of DNA damage in Chinese hamster ovary cells (CHO-K1) exposed to five genotoxicants, $H_2O_2$, $HgCl_2$, N-methyl-N-nitro-N-nitrosoguanidine (MNNG), 4-nitroquinoline-1-oxide (4NQO), and UV-irradiation. In cases cells were treated with $H_2O_2$, $HgCl_2$, and 4NQO together with vitamin C, the damage to DNA decreased to the level of the control group. In cases of UV-irradiation, the protective effect of vitamin C appeared, but did not reach the control levels. Interestingly, vitamin C did not have protective effects against the genotoxicity of MNNG. The degrees of DNA damage of cells treated with vitamin C prior to exposure togenotoxicants were 28~49% lower than those of cells treated with vitamin C after being exposed to genotoxicants. In conclusion, vitamin C had strong antioxidanteffects against genotoxicants by being a primary antioxidant blocking genotoxicity reaching the cells, rather than being a secondary antioxidant acting on post-exposure DNA repair processes. However, vitamin C's protective effects appearto be limited, as there are genotoxicants, such as MNNG, whosegenotoxicityis not affected by vitamin C. Therefore, the results of this study warrant furtherstudies on toxic mechanisms of genotoxicants and their interactions with protective mechanisms of vitamin C.

Changes in the Organic Compound Contents of the Pear Rootstocks Pyrus calleryana and Pyrus betulaefolia Affected by Excessive Soil Moisture (토양 과습처리에 의한 배 대목 Pyrus calleryana 와 Pyrus betulaefolia 집단의 유기물 함량 변화)

  • Won, KyungHo;Kim, Yoon-Kyeong;Ma, Kyeong-Bok;Shin, Il-Sheob;Lee, Ug-Yong;Lee, Byul-Ha-Na;Choi, Jin-Ho;Lee, In-Bok;Kim, Myung-Su
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.3
    • /
    • pp.175-183
    • /
    • 2016
  • BACKGROUND: There's a long rainy season during the Summer in Northeast Asia, including Korea. Heavy rainfall during this season causes harm to tree's root, and damped injury in the pear has been continuously reported. Pear Research Institute is breeding damp resistant rootstocks and investigating their mechanisms to relieve damped damages in the pear.METHODS AND RESULTS: Seedlings of Pyrus betulaefolia and P. calleryana were divided into two groups: control and damped, respectively. Damped group was treated by constant irrigation for 77 days and control group was maintained to keep the soil moisture pressure between 0 and -10 kPa. After the treatment, we analysed trees' growth rate, chlorophyll content, amino acids and total phenolic compounds. As a result, P. betulaefolia was sensitive to damped treatment while P. calleryana did not have significant differences between the control and damped treatment. It was observed that total contents for phenolic compounds were dramatically increased in P. betulaefolia while trees' growth rate, chlorophyll b and general amino acid contents were lowered by damping treatment.CONCLUSION: In some pear cultivars, growth habit is suppressed by damped damage. Pyrus calleryana displayed tolerances to damped damage in growth rate and some organic compound contents compared to P. betulaefolia. So we recommend to exploit P. calleryana as a pear rootstock rather than using P. betulaefolia.

Effect of Soybean Supplementation on Murine Drug-metabolizing Enzymes and Benzo(a)pyrene-induced Lung Cancer Develpoment (콩보충식이가 생쥐의 해독효소계 및 Benzo(a)pyrene에 의해서 유도된 폐암발생에 미치는 영향)

  • Kwon, Chong-Suk;Kim, Jong-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.535-539
    • /
    • 1999
  • Soybean has drawn much attention mainly due to its chemopreventive action as well as antiestrogenic effect. Although suppression of breast and prostate cancers were believed to be exerted via antiestrogenic or antiandrogenic activity of genistein, its mechanism of prevention against other cancers has not been clearly demonstrated. We proposed that prevention by soybean from other cancers than sex hormone -related cancers was achieved via modulation of drug-metabolizing enzymes. Addition of acid hydrolysate of 80% methanol extract of soyflour to diet caused a significant induction of quinone reductase, an anticarcinogenic marker enzyme and one of drug-metabolizing enzymes, in mouse lung while it suppressed arylhydrocarbon hydroxylase, involved in bioactivation of procarcinogens, in kidney and small intestine. It is likely that active components exist in a conjugated form and released by acid hydrolysis to be able to affect drug-metabolizing enzyme and exert chemopreventive activity. Benzo(a)pyrene-induced tumor development in mouse lung was greatly reduced by soybean extract supplementation, which is consistent with the extract's capability to modulate favorably arylhydrocarbon hydroxylase and quinone reductase towards chemoprevention.

  • PDF

CaM-5, a soybean calmodulin, is required for disease resistance against both a bacterial and fungal pathogen in tomato, Lycopersicum esculentum (대두 calmoduine유전자 SCaM-5를 발현하는 형질전환 토마토의 병 저항성 검정)

  • Lee, Hyo-Jung;Baek, Dong-Won;Lee, Ok-Sun;Lee, Ji-Young;Kim, Dong-Giun;Chung, Woo-Sik;Yun, Jae-Gil;Lee, Sin-Woo;Kwak, Sang-Soo;Nam, Jae-Seung;Kim, Doh-Hoon;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.93-97
    • /
    • 2006
  • The calmodulin as a Ca$^{2+}$-binding protein mediates cellular Ca$^{2+}$ signals in response to a wide array of stimuli in higher eukaryotes. Plants produce numerous calmodulin isoforms that exhibit differential gene expression patterns and sense different Ca$^{2+}$ signals. SCaM-5 is a soybean calmodulin that is involved in plant defense signaling. Here, we constructed a SCaM-5 CDNA under control of CaMV 35S promoter and transformed it into tomato (Lycopersicon esculentum). The constitutive over-expression of SCaM-5 in tomato plants exhibited a high levels of pathogenesis-related (PR) gene expression, and conferred an enhanced resistance to two fungal pathogen (Phytophthora capsici, Fusarium oxysporum), and a bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. Thus, this results collectively suggest that SCaM-5 plays an important role in plant defense of tomato.