• Title/Summary/Keyword: 방사조건

Search Result 1,110, Processing Time 0.042 seconds

Immobilization of Molten Waste Salt Using Zeolites (제올라이트를 이용한 용융염폐기물 고정화)

  • 김정국;이재희;김준형
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.215-219
    • /
    • 2003
  • The technology to fix a molten LiCl waste, which would be generated from the process to convert spent fuel to metal, into zeolite and then make a final waste form is doing developed. The XRD results of salt-loaded zeolites with different mixing ratios showed that all zeolites transformed from zeolite A type into Li-A type, or also Sodalite type as a minor phase for some conditions. The optimum LiCl-to-zeolite ratio to bring a minimum free salt was 1.0 when the molten LiCl waste contained Cs and Sr.

  • PDF

Safety Evaluation of a Radioisotope Transport Package (방사성 동위원소 운반용기의 안전성 평가)

  • Lee, J.C.;Ku, J.H.;Seo, K.S.;Min, D.K.
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.4
    • /
    • pp.251-261
    • /
    • 1997
  • A package to transport the high level radioactive materials is required to withstand the hypothetical accident conditions as well as normal transport conditions according to IAEA standards and domestic regulations. The regulations require that the package should maintain the shielding, thermal and structural integrities to release no radioactive material. In general, safety evaluation of packages is performed by experimental methods using scale model and/or analytical methods using computer codes. This paper presents the safety evaluation of package to transport the radioisotopes produced in the HANARO to the radioisotope production facility. Radiation shielding, thermal and structural analyses were peformed using the computer codes. It has been verified that the package is safe under hypothetical accident conditions as well as normal transport conditions.

  • PDF

A Study on Diffusion Approximations to Neutron Transport Boundary Conditions (중성자 수송경계조건의 확산근사에 대한 연구)

  • Noh, Taewan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.203-209
    • /
    • 2018
  • To correctly predict the neutron behavior based on diffusion calculations, it is necessary to adopt well-specified boundary conditions using suitable diffusion approximations to transport boundary conditions. Boundary conditions such as the zero net-current, the Marshak, the Mark, the zero scalar flux, and the Albedo condition have been used extensively in diffusion theory to approximate the reflective and vacuum conditions in transport theory. In this paper, we derive and analyze these conditions to prove their mathematical validity and to understand their physical implications, as well as their relationships with one another. To show the validity of these diffusion boundary conditions, we solve a sample problem. The results show that solutions of the diffusion equation with these well-formulated boundary conditions are very close to the solution of the transport equation with transport boundary conditions.