In this experiment, we are to know the administered radioactivity in the actual patients by measuring the remained radioactivity when administering the isotope with noted MDP, the radiopharmaceutical product, to 50 visited patients for the bone scan, confirmed the radioactivity administered to actual patients. We confirmed the actual administered amount of remained radioactivity in the syringe and 3-way by using a gauger after administering the isotope with MDP noted via 3-way with 50 patients maintaining 3-way after CT or MRI among the visited patients for the bone scan in the department of nuclear medicine. As a result of radioactivity in the 3-way and syringe pre and post injection of radiopharmaceutical products in 50 patients, average radioactivity of pre-injection is 31.75 mCi, average remained radioactivity in the syringes after injection is 1.22 mCi, and the average remained radioactivity in 3-way after injection is 0.95 mCi. The average of actual administered radioactivity is 29.57, so it is obvious that average 2.18 mCi was administered for less than the dosage that we initially intended to inject. When determining the dosage in view of the radioactivity that remains in the 3-way with the syringe, it would be possible to accurately dose the desired dosage to be administered to actual patients.
This study was conducted by SPECT test at the Department of Nuclear Medicine at Daegu P Hospital from June 1 to October 31, 2019. A 3-way injection material was mounted among inpatients, and a syringe that was administered with radiopharmaceuticals using a 99mTc labeled compound was secured. We tried to find a way to calculate the dose rate of each radiopharmaceutical and increase the dose rate. As a result of measuring the radioactivity of radio-pharmaceuticals using 99mTc, the average dose rate of 60 syringes of all 6 radiopharmaceuticals was 93.26±7.34%, and the average dose rate of 99mTc-DMSA was 77.72%, 15.54% lower than the total. As a way to increase the dosing rate, the average dose rate diluted twice with the remaining amount of syringe after administration using normal saline increased to 95.37±6.99%, and the average dose rate diluted three times increased to 96.32±6.86%. The corresponding sample t-test to compare the pre- and post-dose rates at 1 dilution and 2 and 3 dilutions. As a result of the dilution and 2 dilutions, the probability of significance was 0.013, which was significantly higher than the dilution(p<0.05). The probability of significance for dilution 1 and dilution 3 was 0.016, which was significantly higher than in one dilution(p<0.05). The sum of the average dose rate using the experimental 3-way line was the highest with 98.85±1.42% of 99mTc, 99mTc-ECD 98.82±1.26%, 99mTc-Mebrofenin 98.82 ± 1.16%, 99mTc-HDP 98.74 ± 1.91%, 99mTc -MIBI was 98.69 ± 1.48%, and 99mTc-DMSA was the lowest with 86.47 ± 4.74%. When the number of dilutions was 5 times using 0.5 cc of normal saline and when the number of dilutions was 5 times using 1 cc of normal saline, when the number of dilutions was 5 times using 0.5 cc of normal saline and 1 cc of nomal saline When the number of dilutions was 5 times and the syringe volume was 0.5 cc, there was a statistically significant difference (p<0.05). There was a statistically significant difference when the number of dilutions was 5 times using 1 cc of nomal saline and the number of dilutions was 5 times using 1 cc of normal saline, and the syringe volume was 0.5 cc (p<0.05).
In addition to tumors, normal tissues, such as the brain and myocardium can intake $^{18}F$-FDG, and the amount of $^{18}F$-FDG intake by normal tissues can be altered by the surrounding environment. Therefore, a process is necessary during which the contrasts of the tumor and normal tissues can be enhanced. Thus, this study examines the effects of glucose levels on FDG PET images of brain tissues, which features high glucose activity at all times, in small animals. Micro PET scan was performed on fourteen mice after injecting $^{18}F$-FDG. The images were compared in relation to fasting. The findings showed that the mean SUV value w as 0.84 higher in fasted mice than in non-fasted mice. During observation, the images from non-fasted mice showed high accumulation in organs other than the brain with increased surrounding noise. In addition, compared to the non-fasted mice, the fasted mice showed higher early intake and curve increase. The findings of this study suggest that fasting is important in assessing brain functions in brain PET using $^{18}F$-FDG. Additional studies to investigate whether caffeine levels and other preprocessing items have an impact on the acquired images would contribute to reducing radiation exposure in patients.
For the preparation of $^{99m}Tc$-labeled RBC, $10{\sim}20\;{\mu}g/kg$ of Stannous(II) chloride and $10{\sim}40\;min$ of preparation was used. For finding out the effect of contrast agent, the blood samples were collected in three days, seven days, and 1 months after the diagnostic procedure. In the normal volunteer, the concentration of reducing agent and preparation time did not effect on the radiochemical yield. But in the patients, 10 mg of Stannous(II) chloride and 60 min incubation times was shown high radiochemical yield. Contrast agent has a significant effect on the radiochemical yield. Although the blood samples which were collected after seven days of diagnostic procedure did not effect on the radiochemical yield of $^{99m}Tc$-labeled RBC, but the radiochemical yield of $^{99m}Tc$-labeled RBC which was prepared with a sample of high concentration of contrast agent in blood led to low radiochemical yield. For these samples, the modified method showed high radiochemical yield than previous in vivo preparation method. The recommended method is followed. Blood collecting was performed at 30 minutes after injection of reducing agent, and it is centrifuged for removal of plasma. After addition of $^{99m}TcO^-_4$, sample reservoir was rotated. After addition of normal saline, and it is centrifuged for separation of saline. Then $^{99m}Tc$-labeled RBC was obtained after removal of saline.
Purpose: The present study has an objective of effectively separating and making observations on a portion of radiopharmaceutical excreted via digestive organ to remain in the organ and invade a heart shadow. Materials and methods: When heart shadow is blocked by the organ in tests during a resting phase and a loaded phase, additional images were obtained using immobilization device. The immobilization devices were used to tilt the upper body forward from supine position. Results: In the reconstructed image for the separated case, as compared with the case where a part of organ is overlapped with heart, in terms of an overall mean value for each parameter, the end-diastolic volume increased by 2.75 mL, the end-systolic volume decreased by 3.16 mL, the left ventricle cardiac coefficient increased by 3.58%, and the area of defect region decreased by 3.58 and 3.92 cm for loading and resting phase, respectively. Conclusions: In the present study with myocardial perfusion SPECT, overlapped areas of heart and other organs could be effectively separated and visualization by the use of an immobilization device.
Purpose: Cellular uptakes of $^{99m}Tc-sestamibi(MIBI)\;and\;\;^{99m}Tc-tetrofosmin$ into cancer cell lines expressing multidrug resistance(MDR) were investigated and compared. The effects of verapamil and cyclosporin A, well-known multidrug resistant reversing agents, on cellular uptakes of both tracers were also compared. Materials and Methods: Doxorubicin-resistant HCT15/CL02 human colorectal cell and doxorubicin-resistant K562(Adr) and vincristine-resistant K562(Vcr) human leukemic cells were studied. RT-PCR analysis was used for the detection of mdr1 mRNA expression. MDR-reversal effects with verapamil and cyclosporine A were evaluated at different drug concentrations after incubation with MIBI and tetrofosmin for 1, 15, 30, 45 and 60 min, using single-cell suspensions at $1{\times}10^6cells/ml$ incubated at $37^{\circ}C$. Radioactivity in supernatants and pellets were measured with gamma well counter. Results: The cellular uptakes of MIBI and tetrofosmin in K562(Adr) and K562(Vcr) were lower than those of parental K562 cell. In HCT15/CL02 cells and K562(Adr) cells, there were no significant difference in cellular uptakes of both tracers, but cellular uptake of MIBI was higher than that of tetrofosmin in K562(Vcr) cells. Coincubation with verapamil resulted in a increase In cellular uptakes of MIBI and tetrofosmin. Verapamil increased cellular uptakes of MIBI and tetrofosmin by HCT15/CL02 cell by 11.9- and 6.8-fold, by K562(Adr) cell by 14.3- and 8-fold and by K562(Vcr) cell by 7- and 5.7-fold in maximum, respectively. Cyciosporin A increased cellular uptakes of MIBI and tetrofosmin by HCT15/CL02 cell by 10- and 2.4-fold, by K562(Adr) cell by 44- and 13-fold and by K562(Vcr) cell by 18.8- and 11.8-fold in maximum, respectively Conclusion: Taking together, MIBI and tetrofosmin are considered as suitable radiopharmaceuticals for defecting multidrug resistance. However, MIBI seems to be a better tracer than tetrofosmin for evaluating MDR reversal effect of the modulators. Since cellular uptakes of both tracers might differ in different cell types, further experiments regarding differences in cellular uptakes between cell types should be explored.
With the development of Amyloid PET Tracer, the accuracy of Alzheimer's diagnosis can be improved through the identification of beta-amyloid neurites. However, the long image acquisition time of 20 minutes can be difficult for the patient. PET/CT scans are sensitive to patient movement and may partially affect test results. In this study, we studied the proper image acquisition time without affecting the quantitative evaluation of the image through the list mode acquisition method according to the time of the distribution of radioactive drugs in the body. The list mode includes information about time compared to the existing frame mode, and it is easy to analyze data because it can reconstruct images about the time that researchers want. The research method obtained a reconstructed image by time using a list mode of 5min frame/bed, 10min frame/bed, 15min frame/bed, and 20min frame/bed to compare the difference between signal-to-pons take ratio (SNR) and lesion-to-pons uptake ratio (LPR) and the difference in reading time to obtain an appropriate image. As a result of quantitative analysis, when measuring in list mode, SUVmean values decreased in 6 regions of interest as the image acquisition time increased, but showed the largest difference in 5 min/bed images, followed by 10 min/bed and 15 min/bed. As a result, the difference in SUVmean values decreased. Therefore, it was found that SUVmean values at 15 min/bed did not differ enough to not affect image evaluation. There was no difference in LPR values. As a result of the qualitative analysis, there was no change in the reading findings according to the PET image acquisition time and there was no significant difference in the qualitative analysis score of the image reconstruction according to time. As a result of the study, there is no significant difference between 15 min/bed and 20 min/bed images during the 18F-flutemetamol PET/CT test, so it can be said that it is clinically useful to reduce the image acquisition time selectively using 15 min/bed via list mode depending on the patient's condition.
Purpose: $^{99m}Tc$-sestamibi(MIBI) and $^{99m}Tc$-tetrofosmin have been used as substrates for P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP), which are closely associated with multidrug resistance of the tumors. To understand different handling of radiotracers in cancer cell lines expressing Pgp and MRP, we compared cellular uptakes of $^{99m}Tc$-MIBI and $^{99m}Tc$-tetrofosmin. The effects of cyclosporin A (CsA), well-known multidrug resistant reversing agent, on the uptake of both tracers were also compared. Materials and Methods: HCT15/CL02 human colorectal cancer cells for Pgp expressing cells, and human non-small cell lung cancer A549 cells for MRP expressing cells, were used for in vitro and in vivo studies. RT-PCR, western blot analysis and immunohistochemistry were used for detection of Pgp and MRP. MDR-reversal effect with CsA was evaluated at different drug concentrations after incubation with MIBI or tetrofosmin. Radioactivities of supernatant and pellet were measured with gamma well counter. Tumoral uptake of the tracers were measured from tumor bearing nude mice treated with or without CsA. Results: RT-PCR, western blot analysis of the cells and irnrnunochemical staining revealed selective expression of Pgp and MRP for HCY15/CL02 and A549 cells, respectively. There were no significant difference in cellular uptakes of both tracers in HCT15/CL02 cells, but MIBI uptake was slightly higher than that of tetrofosmin in A549 cells. Co-incubation with CsA resulted in a increase in cellular uptakes of MIBI and tetrofosmin. Uptake of MIBI or tetrofosmin in HCT15/CL02 cells was increased by 10- and 2.4-fold, and by 7.5 and 6.3-fold in A549 cells, respectively. Percentage increase of MIBI was higher than that of tetrofosmin with CsA for both cells (p<0.05). In vivo biodistribution study showed that MIBI (114% at 10 min, 257% at 60 min, 396% at 240 min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively increased by the time, up to 240 min with CsA. But increases in tumoral uptake were not significantly different between MIBI and tetrofosmin for both tumors. Conclusion: MIBI seems to be a better tracer than tetrofosmin for evaluating MDR reversal effect of the modulators in vitro, but these differences were not evident in vivo tumoral uptake. Both MIBI and tetrofosmin seem to be suitable tracers for imaging Pgp- and MRP-mediated drug resistance in tumors.
Park, Min-Ho;Lee, Ha-Young;Ryu, Hwa-Jin;Yoo, Tae-Min;Noh, Gyeong-Woon
The Korean Journal of Nuclear Medicine Technology
/
v.22
no.2
/
pp.97-100
/
2018
Purpose The glomerular filtration rate (GFR) test is an important indicator of glomerular filtration and has been used to test renal function and the extent of its function. The GFR test is performed by intravenous injection of radioactive medicines made of $^{51}Cr$-EDTA, and blood concentration is measured by taking blood according to the elapsed time. also, PET-CT, bone scan, transfusion and so on will affect the outcome. Therefore, we will improve the quality of the test by providing guidelines for the GFR test for more accurate testing. Materials and Methods 5 mL of physiological saline solution and 2 mL of $^{51}Cr$-EDTA solution are used to make 5 mL of the radiopharmaceutical solution to be injected into the patient. First, the syringe weight is measured before the injection, and then the radioactive medicine is injected into the patient's vein and the syringe weight is measured after the injection. Blood sampling is performed twice in total. In adults, blood is collected 3 hours / 5 hours after injection and in children 2 hours / 5 hours after injection. The blood sample is centrifuged at 3300 rpm for 5 minutes. Standard solution is prepared by filling diluent water up to the scale indicated in the 200-mL volumetric flask, discarding $500{\mu}L$, injecting $500{\mu}L$ of GFR reagent and mixing well. $500{\mu}L$ each of the standard solution is dispensed into two test tubes, and $500{\mu}L$ of each of the plasma samples collected in time is dispensed into two test tubes and measured with a Cobra Counter. Results At present, the reference range applied in this study is $119.5{\pm}30.3ml/min/1.73m2$ for males and $125.2{\pm}28.2ml/min/1.73m^2$ for females. Conclusion The GFR test is conducted using radioactive medical products. GFR testing is performed as a scheduled test, but PET-CT, dialysis and transfusion, which may affect GFR testing, may be scheduled during GFR testing. Therefore, we could get accurate GFR test results by notifying the ward and department beforehand when booking.
Kim, Dae-Weung;Jeong, Hwan-Jeong;Kim, Eun-Mi;Kim, Se-Lim;Kang, Yun-Hee;Kim, Min-Woo;Kim, Chang-Guhn;Sohn, Myung-Hee
The Korean Journal of Nuclear Medicine
/
v.39
no.5
/
pp.278-283
/
2005
Purpose: In prior study, we synthesized $^{99m}Tc$-galactosylated chitosan (GC) and performed in vivo biodistribution study, showed specific targeting to hepatocyte. The aim of this study is to evaluate the labeling efficiency and cytotoxicity of modified galactosylated chitosan compounds, galactosyl methylated chitosan (GMC) and HYNIC-galactosylated chitosan (GCH). Materials and Methods: GC, GMC and GCH were synthesized and radiolabeled with $^{99m}Tc$. Then, they were incubated for 6 hours at room temperature and human serum at $37^{\circ}C$. Labeling efficiencies were determined at 15, 30 m, 1, 2, 3 and 6 h after radiolabeling. To evaluate cytotoxicity, MTT assay was performed in HeLa and HepG2 cells. Results: In comparison with them of $^{99m}Tc$-GC labeling efficiencies of $^{99m}Tc$-GMC were significantly improved (100, 97 and 89%) in acetone and 96.3, 95.8 and 75.6% in saline at 15 m, 1 and 6 h, respectively). Moreover, $^{99m}Tc$-GCH showed more improved labeling efficiencies (>95% in acetone and human serum and >90% in saline at 6 h). In MTT assay, cytotoxicity was very low and not different from that of controls. Conclusion: These results represent that these compounds are radiochemically compatible radiopharmaceuticals, can be used in hepatocyte specific imaging study and in vivo gene or drug delivery monitoring.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.