Comparative Uptake of Tc-99m Sestamibi and Tc-99m Tetrofosmin in Cancer Cells and Tissue Expressing P-Glycoprotein or Multidrug Resistance Associated Protein

P-Glycoprotein과 Multidrug Resistance Associated Protein을 발현하는 암세포와 종양에서 Tc-99m Sestamibi와 Tc-99m Tetrofosmin의 섭취율 비교

  • Cho, Jung-Ah (Department of Nuclear Medicine, School of Medicine, Kyungpook National University) ;
  • Lee, Jae-Tae (Department of Nuclear Medicine, School of Medicine, Kyungpook National University) ;
  • Yoo, Jung-Ah (Department of Nuclear Medicine, School of Medicine, Kyungpook National University) ;
  • Seo, Ji-Hyoung (Department of Nuclear Medicine, School of Medicine, Kyungpook National University) ;
  • Bae, Jin-Ho (Department of Nuclear Medicine, School of Medicine, Kyungpook National University) ;
  • Jeong, Shin-Young (Department of Nuclear Medicine, School of Medicine, Kyungpook National University) ;
  • Ahn, Byeong-Cheol (Department of Nuclear Medicine, School of Medicine, Kyungpook National University) ;
  • Sohn, Sang-Gyun (Department of Internal Medicine, School of Medicine, Kyungpook National University) ;
  • Ha, Jeoung-Hee (Department of Pharmacology, School of Medicine, Kyungpook National University) ;
  • Lee, Kyu-Bo (Department of Nuclear Medicine, School of Medicine, Kyungpook National University)
  • 조정아 (경북대학교 의과대학 핵의학교실) ;
  • 이재태 (경북대학교 의과대학 핵의학교실) ;
  • 유정아 (경북대학교 의과대학 핵의학교실) ;
  • 서지형 (경북대학교 의과대학 핵의학교실) ;
  • 배진호 (경북대학교 의과대학 핵의학교실) ;
  • 정신영 (경북대학교 의과대학 핵의학교실) ;
  • 안병철 (경북대학교 의과대학 핵의학교실) ;
  • 손상균 (경북대학교 의과대학 내과학교실) ;
  • 하정희 (경북대학교 의과대학 약리학교실) ;
  • 이규보 (경북대학교 의과대학 핵의학교실)
  • Published : 2005.02.28

Abstract

Purpose: $^{99m}Tc$-sestamibi(MIBI) and $^{99m}Tc$-tetrofosmin have been used as substrates for P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP), which are closely associated with multidrug resistance of the tumors. To understand different handling of radiotracers in cancer cell lines expressing Pgp and MRP, we compared cellular uptakes of $^{99m}Tc$-MIBI and $^{99m}Tc$-tetrofosmin. The effects of cyclosporin A (CsA), well-known multidrug resistant reversing agent, on the uptake of both tracers were also compared. Materials and Methods: HCT15/CL02 human colorectal cancer cells for Pgp expressing cells, and human non-small cell lung cancer A549 cells for MRP expressing cells, were used for in vitro and in vivo studies. RT-PCR, western blot analysis and immunohistochemistry were used for detection of Pgp and MRP. MDR-reversal effect with CsA was evaluated at different drug concentrations after incubation with MIBI or tetrofosmin. Radioactivities of supernatant and pellet were measured with gamma well counter. Tumoral uptake of the tracers were measured from tumor bearing nude mice treated with or without CsA. Results: RT-PCR, western blot analysis of the cells and irnrnunochemical staining revealed selective expression of Pgp and MRP for HCY15/CL02 and A549 cells, respectively. There were no significant difference in cellular uptakes of both tracers in HCT15/CL02 cells, but MIBI uptake was slightly higher than that of tetrofosmin in A549 cells. Co-incubation with CsA resulted in a increase in cellular uptakes of MIBI and tetrofosmin. Uptake of MIBI or tetrofosmin in HCT15/CL02 cells was increased by 10- and 2.4-fold, and by 7.5 and 6.3-fold in A549 cells, respectively. Percentage increase of MIBI was higher than that of tetrofosmin with CsA for both cells (p<0.05). In vivo biodistribution study showed that MIBI (114% at 10 min, 257% at 60 min, 396% at 240 min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively increased by the time, up to 240 min with CsA. But increases in tumoral uptake were not significantly different between MIBI and tetrofosmin for both tumors. Conclusion: MIBI seems to be a better tracer than tetrofosmin for evaluating MDR reversal effect of the modulators in vitro, but these differences were not evident in vivo tumoral uptake. Both MIBI and tetrofosmin seem to be suitable tracers for imaging Pgp- and MRP-mediated drug resistance in tumors.

목적: 인체대장암 HCT15/CL02 암세포와 인체 비소세포 폐암 A549세포를 대상으로 Pgp와 MRP발현을 조사하고, 세포와 이종이식된 종양조직에서 $^{99m}Tc$-MIBI와 tetrofosmin의 섭취정도를 비교하여 이들 방사성의약품의 Pgp와 MRP 추적자로서의 성능을 알아보고자 하였다. 또한 다약제내성 극복제인 CsA 처리에 의한 두 방사성 의약품의 암세포 내섭취정도를 비교해 보았다. 재료 및 방법: Pgp의 발현은 RT-PCR과 면역조직화학 염색으로, MRP발현은 MRPrl항체에 대한 western blot analysis와 면역조직화학 염색으로 확인하였다. 세포 섭취는 $37^{\circ}C$에서 $1{\times}10^6$개/ml 농도에서 MIBI와 tetrofosmin을 30분과 60분 동안 반응시킨 후 상층액과 침전물로 분리하여 각각의 방사능을 감마계수기로 측정하여, 50 ${\mu}M$의 cyclosporin A (CsA)를 처리한 성적과 비교하였다. 체내실험은 HCT15/CL02세포와 A549세포를 이종이식 한 누드마우스를 4군으로 구분하여, MIBI와 tetrofosmin 만을 주사한 군과, CsA를 70 mg/kg으로 1시간전에 주사한 후 체내분포를 측정한 군으로 구분하였다. MIBI와 tetrofosmin은 각각 370 KBq을 정맥주사하고 10분, 60분, 240분 후에 동물들을 희생시켜 종양조직내의 두 방사성의약품의 장기섭취율(%ID/gm)로 계산하여 비교하였다. 결과: HCT15/CL02세포와 A549세포에서 MIBI와 tetrofosmin의 섭취는 배양시간이 지남에 따라 증가하였으며 그 섭취정도는 MIBI가 tetrofosmin보다 높았다. CsA 50 ${\mu}M$에 의한 MIBI와 tetrofosmin의 섭취정도를 각각의 60분 대조군과 비교하면 각각 763%와 629% 증가하여 MIBI의 섭취증가 정도가 tetrofosmin보다 높았다. 체내에서 두 방사성의약품의 섭취정도는 유사하였다. CsA 처리군의 섭취정도는 각각의 대조군에 비교하여 MIBI는 10분에 114%, 60분에 257%, 240분에 396%로 증가하였으며, tetrofosmin은 10분에 110%, 60분에 205%, 240분에 410%로 증가하였다. HCT15/ CL02 세포실험에서도 두 방사성약품의 섭취정도에 유의한 차이가 없었으나, CsA를 처리하였을 때 MIBI와 tetrofosmin의 섭취율은 기저치보다 모두 증가하였다. CsA에 의한 MIBI와 tetrofosmin의 섭취율은 기저치보다 각각 10배와 2.4배 증가하여, MIBI의 섭취율이 tetrofosmin보다 1.2배에서 4배정도 높았다. HCT15/CL02 종양조직내의 섭취는 CsA 처치시 증가하였으나 MIBI와 tetrofosmin 간에 유의한 차이는 없었다. 결론: Pgp와 MRP를 발현하여 다약제내성을 나타내는 암세포에서 MIBI와 tetrofosmin 섭취율은 유사하였으나, Pgp와 MRP를 억제하는 CsA에 의한 섭취증가정도는 MIBI가 더 높았다. 그러나 두 약제 섭취율 증가의 차이는 동물실험에서는 관찰되지 않았다. 이러한 결과로 보아 MIBI와 tetrofosmin은 Pgp와 MRP에 의한 다약제내성의 발현을 평가할 수 있는 방사성의약품으로 판단되며, 다약제내성 극복제의 시험관내 효능평가에는 MIBI가 tetrofosmin보다 더 우수할 것으로 사료되었다.

Keywords

References

  1. Bradley G, Juranka PF, Ling V. Mechanism of multidrug-resitance. Biochim Biophys Acta 1988;948:87-128
  2. Gottesman MM, Pastan I. Biochemistry of multidrug-resistance mediated by the multidrug transporter. Annu Rev Biochem 1993;62:385-427 https://doi.org/10.1146/annurev.bi.62.070193.002125
  3. Breuninger LM, Paul S, Gaughan K, Miki T, Chan A, Aaronson SA. Expression of multidrug resistance associated protein with increased drug efflux and altered intracellular drug distribution. Cancer Res 1995;55:5342-7
  4. Narasaki F, Oka M, Nakano R, Ikeda K, Fukuda M, Nakamura T, et al. Human canalicular multispecific organic anion transporter (cMOAT) is expressed in human lung, gastric, and colorectal cancer cell. Biochem Biophys Res Commun 1997;240:606-11 https://doi.org/10.1006/bbrc.1997.7703
  5. Evers R, Zaman GJR, van Deemter L, Jansen H, Calafat J, Oomen LCJM, et al. Basolateral localization and export activity of the human multidrug resistance-associated protein (MRP) in polarized pig kidney cells. J Clin Invest 1996;97:1211-8 https://doi.org/10.1172/JCI118535
  6. Dole LA, Ross DD. Multidrug resistance mediated by breast cancer resistance protein BCRP(ABCG2). Oncogene 2003;20:7340-58
  7. Webb M, Brun M, McNiven M, Le-Couteur D, Craft P. MDR1 and MRP expression in chronic B-cell lymphoproliferative disorders. Br J Haematol 1998;102:710-7 https://doi.org/10.1046/j.1365-2141.1998.00822.x
  8. Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, et al. Overexpression of a transporter gene in a multidrugresistance human lung cancer cell line. Science 1992;258:1650-4 https://doi.org/10.1126/science.1360704
  9. Delmon-Moigeon LI, Piwnica-Worms D, Van den Abbeele AD, Holman BL, Davison A, Jones AG. Uptake of the cation hexakis -(2-methoxyisobutylisonitrile)-Technetium-99m by human carcinoma cell lines in vitro. Cancer Res 1990;50:2198-201
  10. Palmedo H, Schomburg A, Grunwald F, Mallmann P, Boldt I, Biersack HJ. Scintimammography with Tc-99m MIBI in patients with suspicion of primary breast cancer. Nucl Med Biol 1996;23: 681-4 https://doi.org/10.1016/0969-8051(96)00084-4
  11. Piwnica-Worms D, Holman BL. Noncardiac applications of hexakis (alkylisonitrile) technetium-99m complexes. J Nucl Med 1990;31:1166-7
  12. Piwnica-Worms D, Chiu ML, Budding M, Kronauge JF, Kramer RA, Croop JM. Functional imaging of multidrug-resistance P-glycoprotein with an organotechnetium complex. Cancer Res 1993;53:977-84
  13. Ballinger JR, Banneman J, Boxen I, Firby P, Hartman NG, Moore MJ. Tc-99m-tetrofosmin as a substrate for P-glycoprotein: In vitro studies in multidrug-resistance breast tumor cells. J Nucl Med 1996;37:1578-82
  14. Kao CH, Ho YJ, Shen YY, Lee JK. Evaluation of chemotheraphy response in patients with small cell lung cancer using technetium-99m-tetrofosmin. Anticancer Res 1999;19:2311-5
  15. Sharma V. Radiopharmaceuticals for assessment of multidrug resistance p-glycoprotein-mediated drug transport activity. Bioconjug Chem 2004;15:1464-74 https://doi.org/10.1021/bc0498469
  16. Rodrigues M, Chehne F, Kalinowaka W, Zielinski C, Sinzinger H. Comparative $^{99m}Tc$Tc-MIBI, $^{99m}Tc$-tetrofosmin and $^{99m}Tc$Tc-furifosmin uptake in human soft tissue sarcoma cell lines. Eur J Nucl Med 2000;27:1839-43 https://doi.org/10.1007/s002590000369
  17. Ding HJ, Shiau YC, Tsai SC, Wang JJ, Ho ST, Kao A. Uptake of $^{99m}$Tc tetrofosmin in lymphoma cell lines: a comparative study with $^{99m}$Tc sestamibi. Appl Radiat Isot 2002;56:853-6 https://doi.org/10.1016/S0969-8043(01)00277-9
  18. Rodrigues M, Chehne F, Kalinowska W, Berghammer P, Zielinki C, Sinzinger H. Uptake of $^{99m}$Tc-MIBI and $^{99m}$Tc-tetrofosmin into malignant versus nonmalignant breast cell line. J Nucl Med 2000;41:1495-9
  19. Choi SU, Kim NY, Choi EJ, Kim KH, Lee CO. Establishment of doxorubicin-resistant subline derived from HCT15 human colorectal cancer cells. Arch Pharm Res 1996;19:342-7 https://doi.org/10.1007/BF02976376
  20. Lee J, Ahn BC. Detection of multidrug resistance using molecular nuclear technique. Korean J Nucl Med 2004;38:180-9
  21. Hendrikse NH, Franssen EJ, van-der-Graaf WT, Vaalsburg W, de-Vries EG. Visualization of multidrug resistance in vivo. Eur J Nucl Med 1999;26:283-93 https://doi.org/10.1007/s002590050390
  22. Kim JK, Lee J, Lee BH, Choi SW, Yoo SE, Lee SW, et al. Reversal of multidrug resistance with KR-30035: evaluated with biodistribution of Tc-99m MIBI in nude mice bearing human tumor xenografts. Korean J Nucl Med 2001;35:168-84
  23. Yoo JA, Jeong SY, Seo MR, Bae JH, Ahn BC, Lee KB, et al. Comparison of the uptake of Tc-99m MIBI and Tc-99m tetrofosmin in A549, and MRP-expressing cancer cells, in vitro and in vivo. Korean J Nucl Med 2003;37:382-92
  24. Yoo JA, Chung SY, Seo MR, Kwak DS, Ahn BC, Lee KB et al. Comparison of the uptake in $^{99m}$Tc-sestamibi and $^{99m}$Tc-tetrofosmin in cancer cell lines expressing multidrug resistance. Korean J Nucl Med 2003;37:178-89
  25. Utsunomiya K, Ballinger JR, Piquette-Miller M, Rauth AM, Tang W, Su ZF, et al. Comparison of the accumulation and efflux kinetics of technetium-99m seestamibi and technetium-99m tetrofosmin in an MRP-expressing tumour cell line. Eur J Nucl Med 2000;27:1786-92 https://doi.org/10.1007/s002590000375
  26. Perek N, Prevot N, Koumanov F, Frere D, Sabido O, Beauchesne P, et al. Involvement of the glutathione S-conjugate compounds and the MRP protein in Tc-99m-tetrofosmin and Tc-99m-sestamibi uptake in glioma cell lines. Nucl Med Biol 2000;27:299-307 https://doi.org/10.1016/S0969-8051(00)00085-8
  27. Cordobes MD, Starzec A, Delmon-Moingeon L, Blanchot C, Kouyoumdjian JC, Prevost G, et al. Technetium-99m-sestamibi uptake by human benign and malignant breast tumor cells: correlation with mdr gene expression. J Nucl Med 1996;37:286-9
  28. Chun KA, Lee J, Lee SW, Kang DY, Sohn SK, Lee JK, et al. Effect of multidrug resistance gene-1 (mdr1) overexpression on in - vitro uptake of $^{99m}$Tc-sestamibi in murine L1210 leukemia cells. Korean J Nucl Med 1999;33:152-62
  29. Piwnica-Worms D, Rao VV, Krounage JF, Croop JM. Characterization of multidrug resistance transport function with an organotechnetium cation. Biochemistry 1995;34:12210-20 https://doi.org/10.1021/bi00038a015
  30. Arbab AS, Koizumi K, Toyama K, Arai T, Araki T. Technetium-99m-tetrofosmin, technetium-99m-MIBI and thallium-201 uptake in rat myocardial cells. J Nucl Med 1998;39:266-71
  31. Arbab AS, Koizumi K, Toyama K, Araki T. Uptake of technetium-99m-tetrofosmin, technetium-99m-MIBI and thallium-201 in tumor cell lines. J Nucl Med 1996;37:1551-6
  32. Kinuya S, Yokoyama K, Li XF, Bai J, Watanabe N, Shuke N, et al. Hypoxia-induced alteration of tracer accumulation in cultured cancer cells and xenografts in mice: implication for pre-therapeutic prediction of treatment outcomes with $^{99m}$Tc-sestamibi. $^{201}$Tl chloride and $^{99m}$Tc-HL91. Eur J Nucl Med 2002;29:1006-11 https://doi.org/10.1007/s00259-002-0846-x
  33. Bernard BF, Krenning EP, Breeman WA, Ensing G, Benjamins H, Bakker WH, et al. $^{99m}$Tc-MIBI, $^{99m}$Tc-Tetrofosmin and $^{99m}$Tc-Q12 in vitro and in vivo. Nucl Med Biol 1998;25:233-40 https://doi.org/10.1016/S0969-8051(97)00201-1
  34. Buscombe JR, Cwikla JB, Thakrar DS, Hilson AJ. Uptake of Tc-99m MIBI related to tumour size and type. Anticancer Res 1997;17:1693-4
  35. Papantoniou V, Christodoulidou J, Papadaki E, Valotassiou V, Souvatzoglou M, Louvrou A, et al. Uptake and washout of $^{99m}$Tc(V)-dimercaptosuccinic acid and $^{99m}$Tc-sestamibi in the assessment of histological type and grade in breast cancer. Nucl Med Commun 2002;23:461-467 https://doi.org/10.1097/00006231-200205000-00006
  36. Kao CH, Tsai SC, Wang JJ, Ho YJ, Ho ST, Changlai SP. Technetium-99m-sestamethoxyisobutylisonitrile scan as a predictor of chemotherapy response in malignant lymphoma compared with P-glycoprotein expression, multidrug resistance-related protein expression and other factors. Br J Hematol 2001;113;369-74 https://doi.org/10.1046/j.1365-2141.2001.02763.x