• Title/Summary/Keyword: 방사선 출력

Search Result 242, Processing Time 0.027 seconds

Grid Noise Removal in Computed Radiography Images Using the Combined Wavelet Packet-Fourier Method (CR영상에서 웨이블릿 패킷-푸리에 방법을 이용한 그리드 잡음 제거)

  • Lee, A Young;Kim, Dong Youn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.175-182
    • /
    • 2012
  • The scattered radiation always occurs when X-ray strikes the object. To absorb the scattered X-rays, the antiscatter grids are used, however these grids images are superimposed in the projection radiography images. When those images are displayed on the monitor, moir$\acute{e}$ patterns are overlapped over the images and disturb the anatomical informations. Most of the researches performed to date removed the grid noises by calculating or observing those frequencies in one dimensional frequency domain, two dimensional wavelet transform or Fourier transform. Those methods filtered not only the grid noises but also diagnostic informations. In this paper, we proposed the combined wavelet packet-Fourier method to remove the grid artifact in CR images. For the phantom image, the proposed method achieved from 5.2 to 7.4 dB better than others in SNR and for CR images by rejecting the grid noise bands effectively while leaving the remaining bands unchanged, the loss of images could get minimal results.

Development of a Computation Program for Automatic Processing of Calibration Data of Radiation Instrument (방사선 측정기 교정 데이터의 자동처리를 위한 전산프로그램 개발)

  • Jang, Ji-Woon;Shin, Hee-Sung;Youn, Cheung;Lee, Yun-Hee;Kim, Ho-Dong;Jung, Ki-Jung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.4
    • /
    • pp.246-254
    • /
    • 2006
  • A computation program has been developed for automatic data processing in the calibration process of gamma survey meter. The automatic processing program has been developed based on Visual Basic. The program has been coded according to steps of calibration procedure. The OLE(object linking an embedding) Excel automation method fur automatic data processing is used in this program, which is a kind of programming technique for the Excel control. The performance test on the basis of reference data has been carried out by using the developed program. In the results of performance test, the values of calibration factors and uncertainties by the developed program were equal to those obtained from the reference data. In addition, It was revealed that the efficiency and precision of working are significantly increased by using the developed program.

Evaluating the Usefulness of Diagnosis through 3D Printing Technology (3D프린팅 기술을 이용한 심혈관 질환 진단의 유용성 평가)

  • Park, Chun-Kyu;Kim, Jung-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.691-696
    • /
    • 2021
  • In order to prevent and treat a patient's disease, the anatomical structure of the lesion through medical imaging is one of the important processes. However, there is a limit to the image displayed on the screen, so many studies are underway to overcome this by using 3D printing technology. To this end, this study implemented a three-dimensional cardiovascular model using actual patient image data, printed it out using a 3D printer, and conducted a usefulness test on current medical professionals. As a result of the usefulness evaluation, when the questionnaire conducted by a total of 5 people was converted to the Likert scale, the average value of all items showed a high result of 4.83 points, and the result of the cross-analysis was (P) = 10.000 (0.265), which was equally positive among all the questionnaires survey results were presented. Based on the results, it is expected that 3D printing technology will help advance medical technology.

Produced Body Customized 3D Print Finger Brace using Dicom File (Dicom file을 이용하여 만든 신체 맞춤형 3D print 손가락 보조기 제작)

  • Choi, Hyeun-Woo;Park, Ji-Eun;Kim, Jung-Hun;Seo, An-Na;Lee, Jong-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.597-603
    • /
    • 2019
  • We obtained a Dicom file using a CT (Computed Tomography), a diagnostic test device used in clinical practice. Dicom files and 3D programs, and finger printers with 3D printers. Because the finger brace is intended for the human body, the accuracy of the shape is very important. 3D Print has the advantage of high precision, variety of materials, and short output time. In clinic, aluminum protector or medical device manufacturer's finger protector is limited. By creating a finger brace with a 3D printer, we expect to be able to apply a precise form of a custom finger brace to the patient that can be used to treat a patient's finger trauma, illness, or deformity.

Manufacture of Daily Check Device and Efficiency Evaluation for Daily Q.A (일일 정도관리를 위한 Daily Check Device의 제작 및 효율성 평가)

  • Kim Chan-Yong;Jae Young-Wan;Park Heung-Deuk;Lee Jae-Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.105-111
    • /
    • 2005
  • Purpose : Daily Q.A is the important step which must be preceded in a radiation treatment. Specially, radiation output measurement and laser alignment, SSD indicator related to a patient set-up recurrence must be confirmed for a reasonable radiation treatment. Daily Q.A proceeds correctness and a prompt way, and needs an objective measurement basis. Manufacture of the device which can facilitate confirmation of output measurement and appliances check at one time was requested. Materials and Methods : Produced the phantom formal daily check device which can confirm a lot of appliances check (output measurement and laser alignment. field size, SSD indicator) with one time of set up at a time, and measurement observed a linear accelerator (4 machine) for four months and evaluated efficiency. Results : We were able to confirm an laser alignment, field size, SSD indicator check at the same time, and out put measurement was possible with the same set up, so daily Q.A time was reduced, and we were able to confirm an objective basis about each item measurement. As a result of having measured for four months, output measurement within ${\pm}2%$, and measured laser alignment, field size, SSD indicator in range within ${\pm}1mm$. Conclusion : We can enforce output measurement and appliances check conveniently, and time was reduced and was able to raise efficiency of business. We were able to bring a cost reduction by substitution expensive commercialized equipment. Further It is necessary to makes a product as strong and slight materials, and improve convenience of use.

  • PDF

Evaluation of the Output Dose of a Linear Accelerator Photon Beams by Using the Ionization Chamber TM31010 Series through TG-51 Protocol to Postal Monitoring Output of RPC for 5 Years (TM31010 계열의 공동이온전리함과 TG-51을 이용한 선형가속기광자선의 5년간 출력선량 평가)

  • Choi, Tae-Jin;Kim, Ok-Bae
    • Progress in Medical Physics
    • /
    • v.22 no.2
    • /
    • pp.92-98
    • /
    • 2011
  • This study is to keep the accuracy and stability of the output dose evaluations for linear accelerator photon beams by using the air ionization chambers (TM31010, 0.125 cc, PTW) through the Task Group 51 protocol. The absorbed dose to water calibration factor $N_{dw}{^{Co-60}}$ was delivered from the air kerma calibration factor $N_k$ which was provided from manufacture through SSDL calibration for determination of output factor. The ionization chamber of TM31010 series was reviewed the calibration factor and other parameters for reduce the uncertainty within ${\pm}2%$ discrepancy and we found the supplied $N_{dw}{^{Co-60}}$ which was derived from Nk has shown a -2.8% uncertainty compare to that of PSDL. The authors provided the program to perform the output dosimetry with TG-51 protocol as it is composed same screen of TG-51 worksheets. The evaluated dose by determination of output factor delivered to postal TLD block for comparison the output dose to that of MDACC (RPC) in postal monitoring program. The results have shown the $1.001{\pm}0.013$ for 6 MV and $0.997{\pm}0.012$ discrepancy for 15 MV X rays for 5 years followed. This study shows the evaluated outputs for linear accelerate photon beams are very close to that of international output monitor with small discrepancy of ${\pm}1.3%$ with high reliability and showing the gradually stability after 2010.

10 MV X-ray Beam Dosimetry by Water and White Polystyrene Phantom (물과 백색폴리스티렌 팬텀에 의한 10 MV X-선 빔 선량계측)

  • Kim, Jong-Eon;Cha, Byung-Youl;Kang, Sang-Sik;Park, Ji-Koon;Sin, Jeong-Wook;Kim, So-Yeong;Jo, Seong-Ho;Son, Dae-Woong;Choi, Chi-Won;Park, Chang-Hee;Yoon, Chun-Sil;Lee, Jong-Duk;Park, Byung-Do
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.83-87
    • /
    • 2008
  • The purpose of this study is to get the correction factor to correct the measured values of the absolute absorbed dose proportional to the water equivalent depth. The measurement conditions in white polystyrene and water phantoms for 10MV X-ray beam are that the distance of source to center of ionization chamber is fixed at SAD 100 cm, the field sizes are $10{\times}10\;cm^2$, $20{\times}20\;cm^2$ and the depths are 2.3 cm, 5 cm, 10 cm, and 15 cm, respectively. The mean value of ionization was obtained by three times measurements in each field size and depths after delivering 100 MU from linear accelerator with output of 400 MU per min to the two phantoms. The correction factor and the percentage deviation in TPR were obtained below 0.97% and 0.53%, respectively. Therefore, we can get high accuracy by using the correction factor and the percentage deviation in TPR in measuring the absolute absorbed dose with the solid water equivalent phantom.

  • PDF

Development of 3D Printing System for Human Bone Model Manufacturing Using Medical Images (의료 영상을 이용한 인체 골 모형 제작의 3차원 프린팅 시스템 개발)

  • Oh, Wang-Kyun
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.433-441
    • /
    • 2017
  • The 3D printing selective laser sintering (SLS) and stereo lithography apparatus (SLA) method used for bone model production has good precision and resolution, but the printers are expensive and need professional knowledge for operation. The program that converts computed tomography digital imaging and communications in medicine (DICOM) file into STL (stereolithography) file is also expensive so requesting 3D printing companies takes a lot of time and cost, which is why they are not generally utilized in surgery. To produce bone models of fractured patients, the use of 3D imaging conversion program and 3D printing system should be convenient, and the cost of device and operation should be low. Besides, they should be able to produce big size bone models for application to surgery. Therefore, by using an fused deposition modeling (FDM) method 3D printer that uses thermoplastic materials such as DICOM Viewer OsiriX and plastic wires, this study developed 3D printing system for Fracture surgery Patients customized bone model production for many clinics to use for surgery of fracture patients by universalizing with no limit in printing sizes and low maintenance and production cost. It is expected to be widely applied to the overall areas of orthopedics' education, research and clinic. It is also expected to be conveniently used in not only university hospitals but also regular general hospitals.

An Evaluation Method of X-ray Imaging System Resolution for Non-Engineers (비공학도를 위한 X-ray 영상촬영 시스템 해상력 평가 방법)

  • Woo, Jung-Eun;Lee, Yong-Geum;Bae, Seok-Hwan;Kim, Yong-Gwon
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.309-314
    • /
    • 2012
  • Nowadays, digital Radiography (DR) systems are widely used in clinical sites and substitute the analog-film x-ray imaging systems. The resolution of DR images depends on several factors such as characteristic contrast and motion of the object, the focal spot size and the quality of x-ray beam, x-ray scattering, the performance of the DR detector (x-ray conversion efficiency, the intrinsic resolution). The DR detector is composed of an x-ray capturing element, a coupling element and a collecting element, which systematically affect the system resolution. Generally speaking, the resolution of a medical imaging system is the discrimination ability of anatomical structures. Modulation transfer function (MTF) is widely used for the quantification of the resolution performance for an imaging system. MTF is defined as the frequency response of the imaging system to the input of a point spread function and can be obtained by doing Fourier transform of a line spread function, which is extracted from a test image. In clinic, radiologic technologists, who are in charge of system maintenance and quality control, have to evaluate or make routine check on their imaging system. However, it is not an easy task for the radiologic technologists to measure MTF accurately due to lack of their engineering and mathematical backgrounds. The objective of this study is to develop and provide for radiologic technologists a medical system imaging evaluation tool, so that they can measure and quantify system performance easily.

A Parametric Study of Pulsed Gamma-ray Detectors Based on Si Epi-Wafer (실리콘 에피-웨이퍼 기반의 펄스감마선 검출센서 최적화 연구)

  • Lee, Nam-Ho;Hwang, Young-Gwan;Jeong, Sang-Hun;Kim, Jong-Yeol;Cho, Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1777-1783
    • /
    • 2014
  • In this paper, we designed and fabricated a high-speed semiconductor sensor for use in power control devices and analyzed the characteristics with pulsed radiation tests. At first, radiation sensitive circular Si PIN diodes with various diameters(0.1 mm ~5.0 mm) were designed and fabricated using Si epitaxial wafer, which has a $42{\mu}m$ thick intrinsic layer. The reverse leakage current of the diode with a radius of 2 mm at a reverse bias of 30 V was about 20.4 nA. To investigate the characteristic responses of the developed diodes, the pulsed gamma-radiation tests were performed with the intensity of 4.88E8 rad(Si)/sec. From the test results showing that the output currents and the rising speeds have a linear relationship with the area of the sensors, we decided that the optimal condition took place at a 2 mm diameter. Next, for the selected 2 mm diodes, dose rate tests with a range of 2.47E8 rad(Si)/sec to 6.21E8 rad(Si)/sec were performed. From the results, which showed linear characteristics with the radiation intensity, a large amount of photocurrent over 60mA, and a high speed response under 350ns without saturation, we can conclude that the our developed PIN diode can be a good candidate for the sensor of power control devices.