• Title/Summary/Keyword: 방사선 영상장치

Search Result 427, Processing Time 0.033 seconds

Development of Three-Dimensional Gamma-ray Camera (방사선원 3차원 위치탐지를 위한 방사선 영상장치 개발)

  • Lee, Nam-Ho;Hwang, Young-Gwan;Park, Soon-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.486-492
    • /
    • 2015
  • Radiation source imaging system is essential for protecting of radiation leakage accidents and minimizing damages from the radioactive materials, and is expected to play an important role in the nuclear plant decommissioning area. In this study, the stereoscopic camera principle was applied to develop a new radiation imaging device technology that can extract the radiation three-dimensional position information. This radiation three-dimensional imaging device (K3-RIS) was designed as a compact structure consisting of a radiation sensor, a CCD camera, and a pan-tilt only. It features the acquisition of stereoscopic radiation images by position change control, high-resolution detection by continuous scan mode control, and stereoscopic image signal processing. The performance analysis test of K3-RIS was conducted for a gamma-ray source(Cs-137) in radiation calibration facility. The test result showed that a performance error with less than 3% regardless of distances of the objects.

Quality Control of Diagnostic X-ray Equipment in Medical Field (의료분야 진단용방사선발생장치의 품질관리)

  • Cho, Pyong-Kon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.159-164
    • /
    • 2021
  • The examination using diagnostic x-ray equipment is one of the most useful diagnostic equipment for identifying information in the human body in diagnostic radiology. For this reason, the number of examinations has recently increased a lot. Increasing the number of examinations will accelerate the aging of the device. In addition, this makes them aware of the importance of quality control for the diagnostic x-ray device. Particularly, in a diagnostic x-ray device, quality control refers to an act of always maintaining a certain level of image quality by identifying and correcting all problems that may lead to reduction of the diagnosis area in advance. Therefore, this study summarizes and reports general information about quality control in examinations using diagnostic x-ray equipment.

A Study on QA for Radiation Therapy Machine by Using Implemented Electronic Portal Imaging Device (전자포탈영상장치의 제작과 방사선치료장치의 QA 적용에 관한 연구)

  • Lee, Dong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.6 s.312
    • /
    • pp.68-75
    • /
    • 2006
  • During cancer therapy by using high energy radiation, it is possible to improve the radiation therapy efficiency by performing a precise radiation therapy after verification of generated setup errors. In this paper, the video based electronic portal imaging device (EPID) which could display the portal image with near real time was developed to verify treatment position errors in radiation therapy instead of an analog typed portal film. This EPID system for applying QA tool of radiation therapy machine was consisted of a metal/fluorescent screen, $45^{\circ}$mirror, camera and image grabber. Radiation field verification has been performed to check quality assurance of the treatment machine itself by using this EPID system. The radiation field error was easily observed by edge detection of irradiated field size on EPID image when $0.6^{\circ}$ shift of collimator angle was generated. So, this implemented EPID system could be used as a radiation QA tool.

A Study on Stereo Visualization of the X-ray Scanned Image Based on Volume Reconstruction (볼륨기반 X-선 스캔영상의 3차원 형상화 연구)

  • Lee, Nam-Ho;Park, Soon-Yong;Hwang, Young-Gwan;Park, Jong-Won;Lim, Yong-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1583-1590
    • /
    • 2011
  • As the existing radiation scanning systems use 2-dimensional radiation scanned images, the low accuracy has been pointed out as a problem of it. This research analyzes the applicability of the stereo image processing technique to X-ray scanned images. Two 2-dimensional radiation images which have different disparity values are acquired from a newly designed stereo image acquisition system which has one additional line sensor to the conventional system. Using a matching algorithm the 3D reconstruction process which find the correspondence between the images is progressed. As the radiation image is just a density information of the scanned object, the direct application of the general stereo image processing techniques to it is inefficient. To overcome this limitation of a stereo image processing in radiation area, we reconstruct 3-D shapes of the edges of the objects. Also, we proposed a new volume based 3D reconstruction algorithm. Experimental results show the proposed new volume based reconstruction technique can provide more efficient visualization for cargo inspection. The proposed technique can be used for such objects which CT or MRI cannot inspect due to restricted scan environment.

An Implementation of Radiologic Imaging Device of Remote Emergency Medical System (원격응급시스템의 방사선 영상장치 구현)

  • Cho, Dong-Heon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.60-65
    • /
    • 2007
  • The radiologic imaging device was implemented. It can be installed in an ambulance or used when an accident happens. After an equipment which generates X-ray generating unit with a tube in DC 12[V] had been made, a trait experiment using an oscilloscope was made. An experiment was carried out where the generated X-ray was saved as a form of a file using a digital detector. In this experiment, as a result of generating X-ray and detecting it using a digital detector, 1.67[MB]-, jpg- radical rays information could be saved. One distinct advantage of the developed radiologic imaging device is the fact that we can efficiently deal with emergency cases too far from the hospital, difficult to diagnose but treat simultaneously. By using the radiologic imaging device at the urgent scene of an accident or in a moving ambulance, we can provide the patient's X-ray information with the emergency medical specialist who is in the emergent medical center and have the patients prescribed and treated appropriately. As a result the developed emergency medical treatment can be expected.

Survey for Diagnostic Radiography Examination in Veterinary Hospital (동물병원 영상의학적검사 실태조사)

  • Lee, Won-Jeong;Jo, Sung-Mi
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.2
    • /
    • pp.177-184
    • /
    • 2022
  • The purpose of this study is surveyed diagnostic radiography (DR) examination in veterinary hospital (VC) including non-ionization radiation such as ultra-sonography and magnetic resonance imaging. From June 1 to June 20. 2021, we surveyed the VC in 00 metropolitan city by using a structural questionnaire which are location of VC and X-ray unit et al.. Data are expressed as a mean with standard deviation for continuous variable or percent for categorical variable using SPSS ver. 26.0. As the first animal to be visited, dogs were the highest with 61.9%, followed by cats with 12.9%. In 87.1% fo cases, DR units were used, and 4 VCs did not. In 27 VCs using DR units, 48.1% separated examination room and control room, 19.8% examined in animal visited, protective clothing was in all VCs, 55.6% were measured radiation exposure dose, 92.6% was responded a necessary for examination education. From the above results, it will help to revise the guidelines for DR units and examination in korea VCs.

3-D Conformal Radiotherapy for CNS Using CT Simulation (입체조준장치를 이용한 중추신경계의 방사선 입체조형치료 계획)

  • 추성실;조광환;이창걸
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.90-98
    • /
    • 2003
  • Purpose : A new virtual simulation technique for craniospinal irradiation (CSI) that uses a CT-simulator was developed to improve the accuracy of field and shielding placement as well as patient positioning. Materials and Methods : A CT simulator (CT-SIM) and a 3-D conformal radiation treatment planning system (3D-CRT) were used to develop CSI. The head and neck were immobilized with a thermoplastic mask while the rest of the body was immobilized with a Vac-Loc. A volumetric image was then obtained with the CT simulator. In order to improve the reproducibility of the setup, datum lines and points were marked on the head and body. Virtual fluoroscopy was performed with the removal of visual obstacles, such as the treatment table or immobilization devices. After virtual simulation, the treatment isocenters of each field were marked on the body and on the immobilization devices at the conventional simulation room. Each treatment fields was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR) and digitally composited radiography (DCR) images from virtual simulation. Port verification films from the first treatment were also compared with the DRR/DCR images for geometric verification. Results : We successfully performed virtual simulations on 11 CSI patients by CT-SIM. It took less than 20 minutes to affix the immobilization devices and to obtain the volumetric images of the entire body. In the absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with simulation films to within 5 mm. This not only reducee inconveniences to the patients, but also eliminated position-shift variables attendant during the long conventional simulation process. In addition, by obtaining CT volumetric image, critical organs, such as the eyes and the spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. Differences between the DRRs and the portal films were less than 3 m in the vertebral contour. Conclusion : Our analysis showed that CT simulation of craniospinal fields was accurate. In addition, CT simulation reduced the duration of the patient's immobility. During the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall, it has improved staff efficiency and resource utilization by standard protocol for craniospinal irradiation.

  • PDF