• 제목/요약/키워드: 방사선량 평가

검색결과 608건 처리시간 0.02초

Effective Doses in the Radial Gamma Radiation Field near a Point Source: Gender Difference and Deviation from the Personal Dose Equivalent (점선원 감마선장에서 유효선량의 성별차 및 개연선량당량과의 차이)

  • Chang, Jai-Kwon;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • 제22권4호
    • /
    • pp.299-307
    • /
    • 1997
  • The individual dose equivalent, $H_p$, effective dose, E, and gender specific effective dose, $E^m$ and E$^f$, were evaluated using the male and female phantoms of MIRD type located in the radial gamma radiation field near a point source. The point sources were placed at the distances of 15, 40 and 100 cm in front of the body at different heights. Two radionuclides, $^{137}Cs$ and $^{131}I$, were selected for the illustrative examples. In terms of the gender specific effective doses, $E^f$ is higher than $E^m$ with a few exceptions, e.g. the case where the point source is at the height of reproductive organs, but the differences from the sex- averaged values are not significant enough to justify use of gender specific dose conversion factors for the radial gamma field. The ratios $H_p$/E were in the range of 1 to 3 depending on the source and dosimeter positions when the dosimeter is worn on the front surface of the torso covering from chest to lower abdomen, but varied from 0.34 to 6.5 in extreme cases. When it is assumed that the typical handling procedure of radioactive source material and the typical dosimeter position(on the chest) be respected, the dosimeters calibrated against the broad parallel field appear to provide estimates with acceptable errors for the effective dose of workers exposed to radial broad gamma field around a point source.

  • PDF

Image-based Absorbed Dosimetry of Radioisotope (영상기반 방사성동위원소 흡수선량 평가)

  • Park, Yong Sung;Lee, Yong Jin;Kim, Wook;Ji, Young Hoon;Kim, Kum Bae;Kang, Joo Hyun;Lim, Sang Moo;Woo, Sang-Keun
    • Progress in Medical Physics
    • /
    • 제27권2호
    • /
    • pp.86-92
    • /
    • 2016
  • An absorbed dose calculation method using a digital phantom is implemented in normal organs. This method cannot be employed for calculating the absorbed dose of tumor. In this study, we measure the S-value for calculating the absorbed dose of each organ and tumor. We inject a radioisotope into a torso phantom and perform Monte Carlo simulation based on the CT data. The torso phantom has lung, liver, spinal, cylinder, and tumor simulated using a spherical phantom. The radioactivity of the actual absorbed dose is measured using the injected dose of the radioisotope, which is Cu-64 73.85 MBq, and detected using a glass dosimeter in the torso phantom. To perform the Monte Carlo simulation, the information on each organ and tumor acquired using the PET/CT and CT data provides anatomical information. The anatomical information is offered above mean value and manually segmented for each organ and tumor. The residence time of the radioisotope in each organ and tumor is calculated using the time activity curve of Cu-64 radioactivity. The S-values of each organ and tumor are calculated based on the Monte Carlo simulation data using the spatial coordinate, voxel size, and density information. The absorbed dose is evaluated using that obtained through the Monte Carlo simulation and the S-value and the residence time in each organ and tumor. The absorbed dose in liver, tumor1, and tumor2 is 4.52E-02, 4.61E-02, and 5.98E-02 mGy/MBq, respectively. The difference in the absorbed dose measured using the glass dosimeter and that obtained through the Monte Carlo simulation data is within 12.3%. The result of this study is that the absorbed dose obtained using an image can evaluate each difference region and size of a region of interest.

Evaluation on the radiation exposure from activated wedge filter (10MV 이상 고에너지 사용시 wedge filler의 방사화가 작업환경에 미치는 영향평가)

  • Lee HwaJung;Kim DaeYoung;Kim WonTaek;Lee KangHyeok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • 제16권2호
    • /
    • pp.69-79
    • /
    • 2004
  • In the process of photon treatments, linear accelerators with energies higher than 10 MV produce neutrons through the (${\gamma}$, n) interactions with the composite materials of the linac head md these materials further produce the induced radiations. We investigate the possible risks from these induced radiations especially in the wedge filters to the radiation workers. Wedge filters are used to modify the isodose profiles in the radiation treatment using the linear accelerator and always be handled by the radiation workers. For the background radiation, we measured the radiation in both the waiting room and the outside of the building for two hospitals, S and H. The results of S hospital were $0.11\;{\mu}Sv/hr$ and $0.10\;{\mu}Sv/hr$ for waiting room and outside respectively, and in the case of H hospital, they were $0.12\;{\mu}Sv/hr$ and $0.11\;{\mu}Sv/hr$. Using a survey meter, we measured the radiation from wedge filters inserted in 10 MV and 15 MV Siemens linear accelerators. The time series measurements were done in ${\sim}1$ minutes after exposure of 5 Gy of monitor units for the field size of $25{\times}25cm^2$. The starting value of 10 MV machine was about $3.26\;{\mu}Sv/hr$, which was three times higher than that of 10 MV. The measured radiation was from $^{28}Al$ and $^{53}Fe$ with a half life of 3.5 min. If the treatment patients are $20{\sim}50$ per day and the number of process of wedge filter change per patient is one or two, the annual dose equivalent is $0.08{\sim}0.4\;mSv$ for 10 MV, and $0.27{\sim}1.36\;mSv$ for 15 MV, which are in the range of dose equivalent limits of radiation workers.

  • PDF

A Study on the Evaluation of 3D Dose Distribution using Normoxic Polymer Gel (정상산소 중합체 겔 선량계를 이용한 3차원 방사선량 평가에 관한 연구)

  • Chung, Se-Young;Kim, Young-Bum;Kwon, Young-Ho;Lee, Suk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • 제19권1호
    • /
    • pp.7-17
    • /
    • 2007
  • Purpose: As increasing complexity of modern radiotherapy technique, more developing dosimetry is required. Polymer gel dosimeters offer a wide range of potential applications with high resolution and assured quality in the thee-dimensional verification of complex dose distribution such as intensity-modulated radiotherapy (IMRT). The purpose of this study is to find the most sensitive and suitable gel as a dosimeter by varying its composition ratio and its condition such as temperature during manufacturing. Materials and Methods: Each polymer gel with various ratio of composition was irradiated with the same amount of photon beam accordingly. Various polymer gels were analyzed and compared using a dedicated software written in visual C++ which converts TE images to R2 map images. Their sensitivities to the photon beam depending on their composition ratio were investigated. Results: There is no dependence on beam energy nor dose rate, and calibration curve is linear. Conclusion: The polymer gel dosimeter developed by using anti-oxidant in this study proved to be suitable for dosimetry.

  • PDF

Assessment of Thyroid Dose Evaluation Method by Monitoring of I-131 Concentration in Air (공기중 I-131 농도 감시에 의한 갑상선 피폭 평가법의 적용성)

  • Lee, Jong-Il;Seo, Kyung-Won
    • Journal of Radiation Protection and Research
    • /
    • 제19권1호
    • /
    • pp.69-80
    • /
    • 1994
  • The TCMI(Three-Compartment Model for iodine) computer code has been developed, which is based on the three-compartment model and the respiratory model recommended in ICRP publication 54. This code is able to evaluate the thyroid burden, dose equivalent, committed dose equivalent and urinary excretion rate as time-dependent functions from the input data: working time and the radioiodine concentration in air. Using the TCMI code, the time-dependent thyroid burdens, the thyroid doses and the urinary excretion rates were calculated for three specific exposure patterns : acute, chronic and periodic. Applicability as an internal dose evaluation method has been assessed by comparing the results with some operational experiences. Simple equations and tables are provided to be used in the evaluation of the thyroid burden and the resulting doses for given I-131 concentration in air and the working time.

  • PDF

Design of a TL Personal Dosimeter Identifiable PA Exposure and Development of Its Dose Evaluation Algorithm (후방피폭선량계측이 가능한 TL 개인선량계의 설계 및 선량평가 알고리즘 개발)

  • Kwon, J.W.;Kim, H.K.;Yang, J.S.;Kim, J.L.;Lee, J.K.
    • Journal of Radiation Protection and Research
    • /
    • 제29권3호
    • /
    • pp.179-186
    • /
    • 2004
  • A single-dosimeter worn on the anterior surface of body of a worker was found to provide significant underestimation of dose to the worker when radiation comes from behind of the human body. Recently, several researchers suggested that this kind of underestimation can be corrected to a certain extent by using an extra dosimeter on the back. But this multiple dosimetry also has the disadvantages like overestimation lowering work efficiency or cost burden. In this study, a single dosimeter introducing asymmetric filters enabled to identify PA exposure was designed by monte-carlo simulation and experiments and its dose evaluation algorithm for AP-PA mixed radiation field was established. This algorithm was applicable to penetrating radiation which had the effective energy more than 100 keV. Besides, the dosimeter and algorithm in this study were possible to be applied to near PA exposure.

The Assessment of Exposure Dose of Radiation Workers for Decommissioning Waste in the Radioactive Waste Inspection Building of Low and Intermediate-Level Radioactive Waste Disposal Facility (경주 중·저준위방사성폐기물 처분시설의 방폐물검사건물에서 해체 방사성폐기물 대상 방사선작업종사자의 피폭선량 평가 및 작업조건 도출)

  • Kim, Rin-Ah;Dho, Ho-Seog;Kim, Tae-Man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제18권2_spc호
    • /
    • pp.317-325
    • /
    • 2020
  • The Korea Radioactive Waste Agency plans to expand the storage capacity of radioactive waste by constructing a radioactive waste inspecting building to solve the problem of the lack of inspection space and drum-handling space in the radioactive waste receipt and storage building for the first-stage disposal facility. In this study, the exposure doses of radiation workers that handle new disposal containers for decommissioning waste in the storage areas of the radioactive waste inspecting building were calculated using the Monte Carlo N-particle transport code. The annual collective dose was calculated as a total of 84.8 man-mSv for 304 new disposal containers and an estimated annual 306 working hours for the radiation work. When the 304 new disposal containers (small/medium type) were stored in the storage areas, it was found that 25 radiation workers should be involved in acceptance/disposal inspection, and the estimated exposure dose per worker was calculated as an average annual value of 3.39 mSv. When the radiation workers handle the small containers in high-radiation dose areas, the small containers should be shielded further by increasing the concrete liner thickness to improve the work efficiency and radiation safety of the radiation workers. The results of this study will be useful in establishing the optimal radiation working conditions for radiation workers using the source term and characteristics of decommissioning waste based on actual measurements.