• Title/Summary/Keyword: 방사선동위원소

Search Result 571, Processing Time 0.026 seconds

Feasibility Study of Gamma Ray Transmission Technique in Distillation Column Using Monte Carlo Simulation (몬테칼로 전산모사를 이용한 감마선 투과계측 증류탑 진단기술의 타당성 연구)

  • Moon, Jinho;Kim, Jongbum;Park, Jang Guen;Jung, Sung-Hee
    • Journal of Radiation Industry
    • /
    • v.7 no.2_3
    • /
    • pp.115-119
    • /
    • 2013
  • The density profile measurement technology by gamma transmission has been widely used to diagnose processes in the field of refinery and petrochemical industry. This technology can reveal a clue and position of abnormal phenomenon of industrial processes during their operation. In this paper, the feasibility of the gamma transmission technology for detecting changes in the amount of fluid in a distillation column was evaluated by using Monte Carlo simulations. The simulations assumed that $^{60}Co$ (1.17, 1.33 MeV) sources and NaI (Tl) detectors (${\Phi}5{\times}5cm$) are located in opposite sides of a column and it concurrently moves in vertical direction. To determine the dependency of a spatial resolution on aperture size of a collimator, the simulation model for a tray in a column were simulated with the aperture sizes of 1 and 2 cm. The thickness of the high density area including a tray and fluid was 7.6 cm in the simulation. The spatial resolution of the tray was 8.2 and 8.5 cm, respectively. As a result, it was revealed that the conventional density profile measurement technique is not able to show the deviation of liquid level on a tray in a column.

Characteristics of Electroplated Ni Thick Film on the PN Junction Semiconductor for Beta-voltaic Battery (베타전지용 PN 접합 반도체 표면에 도금된 Ni 후막의 특성)

  • Kim, Jin Joo;Uhm, Young Rang;Park, Keun Young;Son, Kwang Jae
    • Journal of Radiation Industry
    • /
    • v.8 no.3
    • /
    • pp.141-146
    • /
    • 2014
  • Nickel (Ni) electroplating was implemented by using a metal Ni powder in order to establish a $^{63}Ni$ plating condition on the PN junction semiconductor needed for production of beta-voltaic battery. PN junction semiconductors with a Ni seed layer of 500 and $1000{\AA}$ were coated with Ni at current density from 10 to $50mA\;cm^{-2}$. The surface roughness and average grain size of Ni deposits were investigated by XRD and SEM techniques. The roughness of Ni deposit was increased as the current density was increased, and decreased as the thickness of Ni seed layer was increased. The results showed that the optimum surface shape was obtained at a current density of $10mA\;cm^{-2}$ in seed layer with thickness of $500{\AA}$, $20mA\;cm^{-2}$ of $1000{\AA}$. Also, pure Ni deposit was well coated on a PN junction semiconductor without any oxide forms. Using the line width of (111) in XRD peak, the average grain size of the Ni thick firm was measured. The results showed that the average grain size was increased as the thickness of seed layer was increased.

Verification of the Cancer Therapeutic Efficacy of Lutetium-177 Using Gene Expression (유전자 발현을 활용한 루테튬 (177Lu)의 암 치료 효능 검증)

  • Da-Mi Kim;So-Young Lee;Jae-Cheong Lim;KangHyuk Choi
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.417-425
    • /
    • 2023
  • Lutetium(177Lu), with its theranostic properties, is one of the most widely used radioisotopes and has a large share of the radiopharmaceutical market due to its many applications and targeted therapeutic research using lutetium-based radiopharmaceuticals. However, lutetium-based radiopharmaceuticals currently approved by the US Food and Drug Administration (FDA) are limited to the indications of gastrointestinal cancer, pancreatic neuroendocrine cancer and metastatic castration-resistant prostate cancer. To overcome these limitations, we aimed to demonstrate the feasibility of expanding the use of lutetium-based radiopharmaceuticals by verifying the availability and therapeutic efficacy of lutetium produced in a research reactor(HANARO). In this study, we confirmed the therapeutic efficacy of lutetium by using cancer cells from different types of cancer. In addition, we selected cancer biomarkers based on characteristics common to various cancer cells and compared and evaluated the therapeutic efficacy of lutetium by regulating the expression of target genes. The results showed that modulation of cancer biomarker gene expression resulted in higher therapeutic efficacy compared to lutetium alone. In conclusion, this study verified the potential use and therapeutic efficacy of lutetium based on the production of a research reactor (HANARO), providing fundamental evidence for the development of lutetium-based radiopharmaceuticals and the expansion of their indications.

Quality Assurance and Control for Elemental Analysis of Air Dust by Neutron Activation Analysis (중성자 방사화분석에 의한 대기먼지 중 원소분석을 위한 품질보증 및 관리)

  • 문종화;김선하;임종명;정용삼;김영진
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.229-230
    • /
    • 2003
  • 중성자 방사화분석법은 핵반응을 통해 생성시킨 방사성 동위원소로부터 방출되는 방사선을 검색하여 절대적으로 성분원소를 정량하는 핵분석기술(Nuclear Analytical Techniques)이다. 현재 한국원자력연구소의 중성자 방사화분석실에서는 대기환경분야 응용연구로서 수년 동안 대기분진을 채집하여 미량 성분원소를 정량하고 있으며, 방법의 유효화와 측정결과의 신뢰성을 확보하기 위하여 시료의 채집 및 준비, 원소분석, 측정결과의 검증 등 분석과정에 대한 품질관리를 수행하고 있다. (중략)

  • PDF

Development of Cryogenic Radiopharmaceutical Transport System (초저온 방사성의약품 운송시스템 개발)

  • Eun-Ha Cho;Yoo-Hwang Lee
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.321-326
    • /
    • 2023
  • Radiopharmaceuticals that need to be transported in a low-temperature state must satisfy both radiation safety and proper temperature maintenance. However, an efficient transport system considering the characteristics of radiopharmaceuticals that require low temperature maintenance has not yet existed. In order to secure a transportation system for the safe and stable transportation of the radiopharmaceutical 131I mIBG, which requires transportation in cryogenic conditions, we have developed a transportation system that can maintain cryogenic conditions below -60℃ for 6 days while stably fixing the inner container. In addition, by applying a data logger that can simultaneously measure the temperature and the dose of radiation, safety and stability in the transportation process can be secured at the same time. The cryogenic transportation system for 131I mIBG will be applied to products currently being supplied, and we expect to dramatically improve the management of cold chain radioactive material transportation.

Study in Occupational Exposure to Radiations and Radioactive Isotopes (방사선 및 방사성동위원소 근로자 피폭실태 연구)

  • Lee, Du-Yong;Kim, Kwang-Jin;Park, Hee-Chan
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.247-255
    • /
    • 2009
  • This study aims to provide basic data for establishing the safety and health plan by investigating the exposure conditions in the facilities registering business about handling radiations and radioactive isotopes in Korea. dose levels(working space, worker location) of the workers in 153 facilities were measured using surveymeter, and individual exposure concentration[(shallow dose(SD), depth dose(DD)] in 27 facilities using thermal luminescence dosimeter(TLD). In accordance with the measurement results by business type[fire fighting prevention business(FFPB, n=10), financial insurance business(FIB, n=3) and other facilities(n=140)] using surveymeter, those three business type groups showed difference (p<0.000). Dose levels of worker location for FFPB and FIB were significantly higher than 10.0 ${\mu}Sv$/hr, the allowable standard for radiations and radioactive isotopes, and they were higher 109.3 times(p<0.000) and 187.5 times(p<0.000) than those in other facilities. The concentration of TLD[FFPB(n=10), other facility (n=17)] in DD of FFPB was significantly higher than that in other facility(p=0.05). In accordance with the analysis result on relationship between surveymeter and TLD, the dose on working space and worker location(r=0.406, p<0.05), worker location dose and SD(r=0.453, p<0.05), worker location dose and DD(r=0.553, p<0.01), and SD and DD(r=0.927, p<0.001) had all related each other. It is urgently required to change FFPB and FIB from the facilities requiring registration for handling radiations and radioactive isotopes to the facilities that shall get permission for handling radiations and radioactive isotopes by reestablishing the legal administration area, for safety and health of radiation occupants.

Dose Distribution Study for Quantitative Evaluation when using Radioisotope (99mTc, 18F) Sources (방사성 동위원소 (99mTc, 18F) 선원 사용 시 인체 내부피폭의 정량적 평가를 위한 선량분포 연구)

  • Ji, Young-Sik;Lee, Dong-Yeon;Yang, Hyun-Gyung
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.603-609
    • /
    • 2022
  • The dose distribution in the human body was evaluated and analyzed through dosimetry data using water phantom, ionization chamber and simulated by Monte Carlo simulation for 99mTc and 18F sources, which are frequently used in the nuclear medicine in this study. As a result of this study, it was found that the dose decreased exponentially as the distance from the radioisotope increased, and it particularly showed a tendency to decrease sharply when the radioisotope was separated by 5 cm. It means that a large amount of dose is delivered to an organ located within 4 cm of source's movement path when a source uptake in the human body. Numerically, it was formed in the rage of 0.16 to 2.16 pC/min for 99mTc and 0.49 to 9.29 pC/min for 18F. In addition, the energy transfer coefficient calculated using the result was found to be similar to the measured value and the simulation value in the range of 0.240 to 0.260. Especially, when the measured data and the simulation value were compared, there was a difference is within 2%, so the reliability of the data was secured. In this study, the distribution of radiation generated from a source was calculated to quantitatively evaluate the internal dose by radioisotopes. It presented reliable results through comparative analysis of the measurement value and simulation value. Above all, it has a great significance to the point that it was presented by directly measuring the distribution of radiation in the human body.