• 제목/요약/키워드: 발화한계온도

검색결과 58건 처리시간 0.029초

사이클로펜탄올의 연소특성치의 측정 (The Measurement of Combustible Properties of Cyclopentanol)

  • 하동명
    • 한국가스학회지
    • /
    • 제18권2호
    • /
    • pp.35-40
    • /
    • 2014
  • 사이클로펜탄올의 안전한 취급을 위해, 폭발한계는 문헌을 통해 고찰하였으며, 인화점과 발화지연시간에 의한 자연발화온도는 장치를 이용하여 측정하였다. 그 결과, 사이클로펜탄올의 밀페식 장치에 의한 하부인화점은 $49^{\circ}C$로 측정되었으며, 개방식에서는 $59^{\circ}C$로 측정되었다. ASTM E659 장치를 사용하여 자연발화온도와 발화지연시간을 측정하였고, 사이클펜탄올의 최소자연발화온도는 $363^{\circ}C$로 측정되었다.

노말언데칸의 연소특성치의 측정 (The Measurement of Combustible Characteristics of n-Undecane)

  • 하동명
    • 한국화재소방학회논문지
    • /
    • 제27권2호
    • /
    • pp.11-17
    • /
    • 2013
  • 노말언데칸의 안전한 취급을 위해서 하부인화점, 상부인화점, 연소점 그리고 발화지연시간에 의한 발화온도를 측정하였다. 또한 노말언데칸의 하부와 상부인화점의 측정값을 이용하여 폭발하한계와 상한계를 예측하였다. 밀폐식 장치에 의한 노말언데칸의 하부인화점은 $59^{\circ}C$$67^{\circ}C$로 측정되었고, 개방식 장치에 의한 하부인화점은 $67^{\circ}C$$72^{\circ}C$로 측정되었다. 클리브랜브 장치에 의한 노말언데칸의 연소점은 $74^{\circ}C$로 측정되었다. ASTM E659-78 장치를 사용하여 자연발화 온도와 발화지연시간을 측정하였고, 여기서 측정된 최소자연발화온도는 $198^{\circ}C$였다. 측정된 하부인화점 $59^{\circ}C$와 상부인화점 $83^{\circ}C$를 이용하여 예측된 폭발하한계는 0.65 Vol.%, 폭발상한계는 2.12 Vol.%였다.

이소부틸알코올(IBA)의 연소특성치 측정에 의한 MSDS의 적정성 연구 (The Study on the Compatibility of MSDS by Means of Measurement of Combustible Properties for Isobutylalcohol(IBA))

  • 하동명
    • 한국가스학회지
    • /
    • 제18권3호
    • /
    • pp.75-81
    • /
    • 2014
  • 이소부틸알코올의 안전한 취급을 위해, 폭발한계는 문헌을 통해 고찰하였으며, 인화점과 발화지연시간에 의한 자연발화온도는 장치를 이용하여 측정하였다. 공정에서는 이소부틸알코올의 폭발하한계는 1.7 Vol.% 그리고 상한계는 10.9 Vol.%가 사용되고 있다. 인화점의 경우 밀폐식 장치인 Setaflash와 Penski-Martens에 의한 하부인화점은 각 각 $25^{\circ}C$$30^{\circ}C$로 측정되었으며, 개방식인 Tag와 Cleveland 에서는 각 각 $36^{\circ}C$$39^{\circ}C$로 측정되었다. ASTM E659 장치를 사용하여 자연발화온도와 발화지연시간을 측정하였고, 이소부틸알코올의 최소자연발화온도는 $400^{\circ}C$로 측정되었다.

아닐린의 연소특성치의 측정 및 예측에 관한 연구 (The Study on Measurement and Prediction of Combustible Properties for Aniline)

  • 하동명
    • 한국가스학회지
    • /
    • 제18권4호
    • /
    • pp.44-50
    • /
    • 2014
  • 아닐린의 안전한 취급을 위해, 폭발한계는 문헌을 통해 고찰하였으며, 인화점과 발화지연시간에 의한 자연발화온도는 시험장치를 이용하여 측정하였다. 인화점의 경우 밀폐식 장치인 Setaflash와 Penski-Martens 에 의한 하부인화점은 각 각 $66^{\circ}C$$73^{\circ}C$로 측정되었으며, 개방식인 Tag와 Cleveland 에서는 각 각 $72^{\circ}C$$78^{\circ}C$로 측정되었다. ASTM E659 장치를 사용하여 자연발화온도와 발화지연시간을 측정하였고, 최소 자연발화온도는 $590^{\circ}C$로 측정되었다. 아닐린의 측정된 인화점을 이용하여 폭발하한계와 상한계는 1.16 Vol.%와 8.36 Vol.%로 게산되었다.

이소아밀알코올의 화재 및 폭발 특성치의 측정 및 예측 (The Measurement and Prediction of the Fire and Explosion Properties of Isoamyl alcohol)

  • 하동명
    • 에너지공학
    • /
    • 제25권3호
    • /
    • pp.34-40
    • /
    • 2016
  • 화학산업에서 다양하게 사용되고 있는 이소아밀알코올의 안전한 취급을 위해서 인화점과 최소자연발화온도를 측정하였다. 폭발하한계는 실험에서 얻어진 하부인화점을 이용하여 계산하였다, 이소아밀알코올의 Setaflash 밀폐식은 $42^{\circ}C$, Pensky-Martens 밀폐식에서는 $43^{\circ}C$ 그리고 Tag 개방식에서는 $46^{\circ}C$, Cleveland 개방식에서는 $54^{\circ}C$로 측정되었다. ASTM E659 장치에 의한 이소아밀알코올의 최소자연발화온도는 $327^{\circ}C$로 측정되었다. 측정된 하부인화점 $42^{\circ}C$에 의한 폭발하한계는 1.41 vol%로 계산되었다. 폭발한계는 측정된 인화점이나 문헌에 제시된 인화점을 이용하여 예측 가능함을 알 수 있었다.

알코올화합물의 폭발특성 및 화염온도 예측에 관한 연구

  • 하동명
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 1998년도 춘계 학술논문발표회 논문집
    • /
    • pp.179-184
    • /
    • 1998
  • 가연성물질의 안전한 취급을 위해서는 이들 물질의 가장 기초적인 위험 특성 자료인 폭발한계(화재안전자료)에 대한 지식을 필요로 한다. 발화원이 존재할 때 가연성가스와 공기가 혼합하여 일정 농도 범위내에서만 연소가 이루어지는데 이 혼합범위를 폭발(연소)한계(explosive(flammable) limits) 또는 연소범위라 한다. (중략)

  • PDF

노말알킬케톤류의 화염온도 예측 및 폭발한계의 온도의존성

  • 하동명;이수경
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 2000년도 춘계 학술논문발표회 논문집
    • /
    • pp.140-143
    • /
    • 2000
  • 연소특성은 인화성용제들(석유류 및 알코올류 등)의 취급, 저장, 수송에서 포함되어 있는 잠재 위험성을 평가할 때 고려된다. 여러 연소특성 가운데 폭발한계 (explosive limits)는 가연성물질(가스 및 증기)을 다루는 공정 설계 시 고려해야 할 중요한 변수로써, 발화원이 존재할 때 가연성가스와 옹기가 혼합하여 일정농도범위 내에서만 연소가 이루어지는 혼합범위를 말한다. (중략)

  • PDF

Hydroxy Propyl Methyl Cellulose 분진의 운상자연발화에 관한 연구 (A Study on The Spontaneous Ignition of a Hydroxy Propyl Methyl Cellulose Dust Cloud)

  • 임우섭;목연수
    • 한국안전학회지
    • /
    • 제19권1호
    • /
    • pp.137-140
    • /
    • 2004
  • 최근 산업현장에서는 제품의 품질과 성능을 향상시키기 위해 나노 기술로 나아가는 추세에 있으며, 이러한 연구들로 인해 많은 화학제품의 원료들이 더욱 미세한 상태로 가공 및 취급되어지고 있다. 이에 분진의 특성상 그 위험성이 따라 증가하고 있으므로, 분진폭발의 발생을 예방하기 위해 분진운의 발화온도와 폭발한계산소농도 등을 찾아내는 것은 매우 중요한 일이다. 따라서 본 연구에서는 현재 국내에서 생산되고 있는 Hydroxy Propyl Methyl Cellulose (HPMC)을 가지고 실험을 하였으며, 생산 및 취급과정에서 뜨거운 표면으로부터 발생될 수 있는 화재 및 폭발을 예방하고자, Godbert-Greenwald Furnace장치로 실험하였다. 그 결과 분진 입자의 크기가 작아짐으로서 발화온도는 낮아지는 경향을 나타내었으며, 분진입자의 크기가 45${\mu}m$에서 HPMC 분진운의 최소발화온도는 364$^{\circ}C$로 나타났으며, 폭발한계산소 농도는 11%로 나타났다.

톨루엔의 위험성 평가를 위한 연소특성치 측정 및 고찰 (Measurement and Investigation of Combustible Characteristics for Risk Assessment of Toluene)

  • 하동명;정기신
    • 한국화재소방학회논문지
    • /
    • 제24권2호
    • /
    • pp.76-81
    • /
    • 2010
  • 톨루엔의 안전한 취급을 위해서 $25^{\circ}C$에서 폭발한계와 폭발한계 온도의존성을 고찰하였다. 또한 인화점과 최소발화온도를 측정하였다. 공정의 안전을 위해서 톨루엔의 폭발하한계는 1.13vol%, 상한계는 7.9vol%를 추천한다. 유통법에 의한 하부인화점은 $5^{\circ}C$, 상부인화점은 $40^{\circ}C$로 측정되었으며, Setaflash 장치에 의한 상부인화점은 $41.5^{\circ}C$로 측정되었다. ASTM E659-78 장치에 최소자연발화온도는 $547^{\circ}C$로 측정되었다. 그리고 톨루엔의 새로운 폭발한계 온도의존식을 제시하였으며, 제시한 온도의존식은 문헌값과 일치하였다.

RPF의 열적 안정성과 한계발화온도 (Thermal Stability and Critical Ignition Temperature of RPF)

  • 임우섭;최재욱
    • 한국화재소방학회논문지
    • /
    • 제22권1호
    • /
    • pp.99-104
    • /
    • 2008
  • 재생연료 중에서 고체물질에 해당하는 RPF(Refuse Paper & Plastic Fuel)는 친환경적인 요소와 한정된 지하자원에 대한 대체에너지로서 세계적으로 그 사용량이 증가하는 추세에 있으며, 제조 또는 저장과정에서 종종 화재가 발생하기도 한다. 따라서 RPF에 대한 열적안정성과 임계발화온도에 대한 연구가 필요하며, 이러한 연구를 수행하기 위하여 봄베 열량계, TG-DTA, MS80, SIT-II, Wire Basket를 이용하여 실험을 하였다. 그 결과 RPF는 26.4-28.3 MJ/kg의 발열량을 지니고 있었으며, TG-DTA로 초기 열분해 온도를 측정한 결과 승온속도 2 K/min에서 $192^{\circ}C$로 나타났으며, 미소열량 측정 장치인 MS80으로 분석한 결과 수분이 함유되지 않은 순수한 RPF가 수분이 20%함유된 RPF보다 발열량이 더 큰 것으로 나타났다. 또한 단열자연발화 실험장치인 SIT-II가 Wire Basket Test 보다 낮은 온도인 $118.5^{\circ}C$까지 발화하였으며, Frank-Kamenetskii의 식으로부터 계산되어진 한계발화온도는 무한평판을 기준으로 약 10 m 높이로 저장되어 있을 때, $80^{\circ}C$에서도 발화가 가능한 것으로 나타났다.