• Title/Summary/Keyword: 발사각

Search Result 284, Processing Time 0.027 seconds

Mechanical Design, Analysis, and Environment test for TRIO-CINEMA

  • Lee, Yong-Seok;Kim, Tae-Yeon;Yu, Je-Geon;Jin, Ho;Seon, Jong-Ho;Lee, Dong-Hun;Imme, Thomas;Lin, Robert P.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.67.2-67.2
    • /
    • 2012
  • 경희대학교와 UC Berkeley, Imperial College London은 우주관측을 위한 초소형 인공위성인 TRIO-CINEMA(TRIO-CINEMA) Project를 수행하고 있다. TRIO-CINEMA는 총 3기의 인공위성으로 경희대학교에서 2기의 위성을, UC Berkeley에서 1기의 위성을, Imperial College에서 3개의 자력계를 제작하고 있다. CINEMA는 Cubesat의 3U 규격으로 크기는 $100mm{\times}100mm{\times}340.5mm$이고 무게는 약 3 kg, 소비전력은 약 3 W이며, 지구 주변의 ENA측정을 위한 주 탑재체인 STEIN(SupraThermal Electrons, Ions, and Neutrals)과 자기장 측정을 위한 부 탑재체인 MAGIC(MAGnetometer from Imperial College)이 탑재되어 약 1년간 800 km 태양동주기 궤도에서 임무를 수행할 예정이다. 위성의 발사는 별도의 POD(Picosatellite Orbital Deployer)라는 Adaptor를 사용해 발사체에 탑재되는데, 발사환경에서 위성이 받을 모든 현상에 관하여 NX Nastran을 사용해 계산을 진행하였다. 계산 결과의 검증을 위해 위성의 Structure Model을 가지고 Random Vibration test를 수행해 위성의 고유 진동수를 측정하였다. 또한 위성이 궤도에서 운용 중 다양하게 받게 되는 열원에 따른 위성의 각 부분의 온도변화를 NX TMG program을 사용하여 계산하였다. 계산 결과의 검증을 위해 3월 Thermal Cycle test 및 Thermal Balance test를 수행할 예정이다. UC Berkeley에서 제작한 위성 1기는 제작완료 후 발사를 위해 발사장으로 배송을 완료하였고, 경희대학교에서 제작 중인 CINEMA 위성 2기는 2012년 후반기 러시아에서 Dnepr 로켓을 사용해 발사 예정이다.

  • PDF

The Study on Coordinate Transformation of the Tracking Radar in NARO Space Center (나로우주센터 추적레이더의 좌표 변환에 관한 연구)

  • Shin, Han-Seop;Choi, Jee-Hwan;Kim, Dae-Oh;Kim, Tae-Hyung
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.116-121
    • /
    • 2011
  • The tracking radar systems in NARO space center are used in order to acquire the TSPI (Time, Space, and Position Information) data of the launch vehicle. The tracking radar produce the measurements of tracked targets in the radar-centered coordinate system. When the tracking radar is in the Cartesian/Polar tracking mode, the state vector data is sent in radar-centered Cartesian/Polar coordinate system to RCC. RCC also send the slaving data in Test Range coordinate system to the tracking radar. So, the tracking radars have to transform the slaving data in Test Range coordinate system into in radar-centered coordinate system. In this study, we described the coordinate transformation between radar-centered coordinate system and Test Range coordinated system.

Link Margin Analysis on Telemetry for KSLV-I Launch (KSLV-1 발사를 위한 원격측정신호 Link Margin 분석)

  • Oh, Chang-Yul;Lee, Sung-Hee;Kim, Dong-Hyun;Kwon, Sun-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.105-112
    • /
    • 2009
  • Telemetry data is very important for the Launch Mission and Flight Safety Control during the Space Launch. In Naro Space Center, several telemetry stations such as a small station in the NARO space center, two stations in Jeju and a downrange station on a ship are deployed for the stable acquisition/receiving of the telemetry signals. In this paper, the Link Margin and Reliability for the telemetry are analyzed to evaluate the probability of the signal receiving of each station. Even though the proper analysis is to using the on-board EIRP(Effective Isotropic Radiation Power) values in the direction of the ground station considering the predicted flight trajectory and the locations of the stations, the global EIRP of 95% spatial coverage has been used for the analysis, due to the limitation of the available data.

  • PDF

Analysis of the Flight Trajectory Characteristics of North Korea SLBM (북한 SLBM의 비행특성 해석)

  • Lee, Kyoung-Haing;Seo, Hyeong-Pil;Kwon, Yong-Soo;Kim, Jiwon
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.3
    • /
    • pp.9-16
    • /
    • 2015
  • This research focuses on analysis of the flight trajectory characteristics of SLBM (Submarine Launched Ballistic Missile) of North Korea. Recently, North Korea tested launching of SLBM which is threatening international security. Also it is known that North Korea had possessed the technologies about SLBM since they disassembled submarines out of commission of the former Soviet Union. If the development of the SLBM of North Korea is completed, it should be affected as asymmetric threat to South Korea. Therefore, for active respondence to these threat, it is essential to analyze the SLBM systematically. In this point of view, this work made a SLBM flight model and simulated. In addition, we controled flight trajectories according to adjusting loft angle and described their characteristics. The sea-based ballistic missile defense system is required for an effective response to the flight trajectory of the SLBM from mid-course to terminal phase.

An Analysis of Threat Factors for Strengthen Maritime Safety around Delphi/AHP-Based Launch Site and Flight Paths (Delphi/AHP 기반 발사장 주변 및 비행경로의 해상안전 강화를 위한 위협요인 분석)

  • Ahn-Tae Shin;Byung-Mun Park;Hun-Soo Byun
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.208-216
    • /
    • 2023
  • In this study, using the Delphi method, 20 responses to 4 questions (need for launch safety control, top-priority considerations for ensuring public safety during launch, necessary improvements for securing maritime safety, and maritime safety threat factors) regarding launch vehicles and public safety were obtained from experts, and their importance was evaluated to analyze the factors that threaten the reinforcement of maritime safety around launch sites and flight paths when launching. According to the results of an analytic hierarchy process (AHP) analysis, the consistency ratio of the four questions was 4.8%, which is lower than CR ≤ 0.1(10%), and the consistency percentage of the lower measurement indicators was 3.9~5.7%. The derived importance and priority of maritime safety threat factors during launching were in the following order: Substantial human and physical damage in case of launch accidents(0.36), Prepare legal bases (e.g., penalty details) regarding maritime control(0.32), Secure the safety of personnel, equipment, and facilities in danger zone(0.31), Unauthorized entry of vessels in maritime control zones and non-compliance to restrictions(0.30). This article can serve as a reference for strengthening maritime safety in areas around launch sites and flight paths.

발사체 추진기관의 신뢰성 평가에 대한 연구

  • Cho, Sang-Yeon;Kim, Yong-Wook;Lee, Jeong-Ho;Han, Yong-Min;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.65-71
    • /
    • 2004
  • Development of space launch system is a national project which requires massive cost and endows the pride of the nation. To acquire the successful launch, the reliability of main system and components should be needed. In addition, reliable propulsion system sways the reliability of main system and is the necessary article for the success of project. In this study, the method called "design for reliability" is introduced, which is required to develop the highly reliable propulsion system.

  • PDF

An Experimental Study of Aerodynamic Characteristics on a Projectile with Counter-Rotating Head Installed Fins (조종면이 장착된 회전하는 발사체에서의 공력특성 분석에 관한 실험적 연구)

  • Park, Young-Ha;Je, Sang-Eon;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.357-365
    • /
    • 2013
  • In this study, forces and moments were measured on a projectile which consisted of a missile configuration body(shell) and a head installed control fins. The shell and the head were separated each other and the shell was rotated by an electric motor. The head rotated reversely against the rotational direction of the shell. The rotational force on the head was obtained from a couple of fixed fins of which angular displacement were set to the rotational direction equally. The air velocity was 40m/s on the experiment and the Reynolds number based on the diameter of head was $1.3{\times}10^5$. The other couple of fins were used to control the position and direction of the projectile by changing the angular displacement. From this experiment, the variation of force and moment were measured on the rotating projectile, and the effective amplitude and frequency were obtained through the FFT analysis.

A Study on the Applicability of Air Launch Vehicle (공중발사체의 활용가능성 분석 연구)

  • Kwon, Kybeom;Lee, Kanghyun;Cho, Ye Rang;Ji, Wan Gu;Kim, Kyu Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.203-214
    • /
    • 2022
  • As the global demand for small satellites weighing less than 500 kg increases, the development and operation of dedicated small launch vehicles increase significantly. The responsiveness of a launch vehicle that puts a small satellite into a target orbit at the desired time is attracting attention. As a result, interest in the air launch is increasing in the rapid establishment of a constellation. As the demand for small satellites in south Korea increases, this study performed analyses on the applicability of an air launch vehicle using a large civil aircraft considering the geographical environment. In terms of responsiveness, mission response times were compared and analyzed for air launch vehicles and ground small and large vehicles. In addition, an air vehicle and a small ground vehicle were quantitatively compared and analyzed for the orbital insertion performance. As a result of the analysis, the air launch vehicle has limited responsiveness in Korea regarding rapid satellite constellation establishment. However, it can be an effective alternative for low inclination angle orbit insertion with the benefit of a fast turnaround time. Furthermore, the performance of the orbital injection is close to that of the ground small launch vehicle, and the high efficiency in terms of the required propellant mass is possible, so air launch can be an effective launch means for putting small satellites into orbit in Korea.

Comparative analysis of noise from three Falcon 9 launches (Falcon 9 로켓 3회 발사 소음의 비교 분석)

  • Mathews, Logan T.;Gee, Kent L.;Hart, Grant W.;Rasband, Reese D.;Novakovich, Daniel J.;Irarrazabal, Francisco I.;Vaughn, Aaron B.;Nelson, Pauline
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.322-330
    • /
    • 2020
  • This study investigates the far-field noise from three Falcon 9 vehicle launches from Vandenberg Air Force Base, CA, USA, as measured from the same location within the nearby community of Lompoc. The overall sound pressure levels for the three launches are shown to be similar, but some differences in the early launch period are thought to be weather-related. The peak directivity angle in overall level is approximately 65 deg, which is consistent with horizontally-fired, static rocket data. For the third launch, waveforms and spectra are analyzed for different events during the launch sequence. The measured spectral bandwidth decreases with time, but spectral levels remain above the ambient noise throughout the main-engine firing. Additionally, late-launch phenomena observed in the data appear to be correlated with main-engine cutoff and second-stage engine start.

Preliminary Mission Design of Transfer Orbit of a Lunar Lander Launched by a Korean Space Launch Vehicle (국내 발사체를 이용한 달착륙선 발사시 전이 궤도 예비 임무 설계)

  • Song, Eun-Jung;Lee, Sang-il;Choi, iyoung;Sun, Byung-Chan;Roh, Woong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.867-875
    • /
    • 2022
  • The preliminary mission analysis of a lunar lander, which is mounted on the upper stage of a Korean space launch vehicle, is performed when landing on the moon through a trans-lunar injection maneuver after being injected into the earth's low orbit by th launcher in this paper. Both direct landing and orbital landing methods, which have each advantage and disadvantages, are applied and their transfer orbit characteristics are analyzed according to the launch date when launching in lunar October 2030. We also analyzed the launch dates which satisfying eclipse conditions, solar elevation conditions, and tracking time intervals such as the US lunar lander Surveyor-1. The obtained results show that the most appropriate launch date is the 4th day of lunar October in case of direct landing method, and the 3rd day in case of indirect landing method, since the argument of perigee of the trans-lunar injection orbit and eclipse conditions are favorable in the dates.