• Title/Summary/Keyword: 발문 중심적 상호작용 중심 모형

Search Result 3, Processing Time 0.017 seconds

The Web Based the Question Centered Mathematics Congruence Learning System (웹기반 발문 중심 수학과 합동학습 시스템)

  • Choi, Jeong-Yong;Han, Kyu-Jung
    • Journal of The Korean Association of Information Education
    • /
    • v.12 no.2
    • /
    • pp.141-149
    • /
    • 2008
  • Congruence of figure is a basic to learn a symmetrical figure and helps to understand the characteristics of figure and know the way of drawing figures. The knowledge of congruence provides us art attainments to understand design and fine pieces of art. However, it is difficult to expect the interaction between students or between teachers and students, because of spending too much time for cutting papers and making the shapes of figure during the class for establishing the concepts. This study utilized a question-based interaction model which would foster elementary school student's learning effectiveness and make them understood the concept of congruence, also developed a congruence learning system which could communicate in both synchronous and asynchronous situation.

  • PDF

A study on categories of questions when holding counselling on learning math in regards to grounded theoretical approaches (근거이론적 접근에 따른 수학학습 상담 발문 유형에 대한 연구)

  • Ko, Ho Kyoung;Kim, Dong Won;Lee, Hwan Chul;Choi, Tae Young
    • Journal of the Korean School Mathematics Society
    • /
    • v.17 no.1
    • /
    • pp.73-92
    • /
    • 2014
  • This study was performed in part with the task to find measures to improve the defining characteristics of feelings, value, interest, self-efficacy, and others aspects in regards to learning math among elementary and middle school students. For this study, it was essential to understand the appropriate questions that are needed to be asked during a consultation at a math clinic, for students that are having a hard time learning math. As a method for performing this study, the content of scheduled counseling over 2 years from a math clinic were collected and the questions that were given and taken were analyzed in order to figure out the types of questions needed in order to effectively examine students that are facing difficulty with learning math. The analysis was performed using Grounded theory analysis by Strauss & Corbin(1998) and went through the process of open coding, axial coding, and selective coding. For the paradigm in the categorical analysis stage, 'attitude towards learning math' was set as the casual condition, 'feelings towards learning math' was set as the contextual condition, 'confidence in one's ability to learn math' was set as the phenomenon, 'individual tendencies when learning math' was set as the intervening condition, 'self-management of learning math' was set as the action/interaction strategy, and 'method of learning' was set as the consequence. Through this, the questions that appeared during counseling were linked into categories and subcategories. Through this process, 81 concepts were deducted, which were grouped into 31 categories. I believe that this data can be used as grounded theory for standardization of consultation in clinics.

  • PDF

A Comparative Study on the Influences that 3 Faces of Intellect of Guilford Interact to Mathematics Teaching Patterns of 5 Categories of Higgins in a Viewpoint of Constructivism (Guilford의 지능 이론이 Higgins의 수업 형식에 미치는 영향에 대한 구성주의적 비교 연구)

  • Seo Sung Bo;Park Gyeong Suk
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.3 no.1
    • /
    • pp.1-20
    • /
    • 1999
  • What do our mathematics teachers now do in the classroom? What does it actually mean to teach mathematics? Every preparatory mathematics teacher is confronted with these questions since they have studied to become a teacher. Almost all in-service teachers are faced by of questions, too, as they evaluate their teaching in the light of that of their colleagues. In this sense, Jon L. Higgins has proposed mathematics teaching patterns of five categories, i. e., exploring, modeling, underlining, challenging, and practicing, for the sake of our all teachers. Next, J. P. Guilford has suggested three faces of intellect presented by a single solid model, which we call the 'structure of intellect' Each dimension represents one of the modes of variation of the factors. It is found that the various kinds of operations are in one of the dimensions, the various kinds of products are in another, and the various kinds of contents are in the other one. In order to provide a better basis for understanding this model and regarding it as a picture of human intellect, I've explored it systematically and shown some concrete examples for its tests. Each cell in the model stands for a certain kind of ability that can be described in terms of operation, content, and product, for each cell is at the intersection uniquely combined with kinds of ope- ration, content, and product. In conclusion, how could we use the teaching patterns of five categories, that is, exploring, modeling, underlining, challenging, and practicing, according to the given mathematics learning substances? And also, how could children constitute the learning sub- stances well in their mind with a viewpoint of constructivism if teachers would connect the mathematics teaching patterns of five categories with any factors among the three faces of intellect? I've made progress this study focusing on such problems.

  • PDF