• 제목/요약/키워드: 발광소멸시간

검색결과 14건 처리시간 0.027초

MEE법으로 성장한 InAs/GaAs 양자점의 발광특성 (Luminescence Properties of InAs/GaAs Quantum Dots Grown by MEE Method)

  • 오재원;변혜령;류미이;송진동
    • 한국진공학회지
    • /
    • 제22권2호
    • /
    • pp.92-97
    • /
    • 2013
  • Migration-enhanced epitaxy 성장한 InAs/GaAs 양자점(quantum dots)의 광학적 특성을 PL (photoluminescence)과 Time-resolved PL 이용하여 분석하였다. InAs 양자점은 In을 9.3초 공급하고 5초 차단한 후 As을 3초, 4초, 6초, 또는 9초 공급하고 5초 차단하는 과정을 3회 반복하여 성장하였다. As을 3초 공급한 시료의 PL 피크는 1,140 nm에서 나타나고, PL 세기는 다른 세 시료에 비해 매우 약하게 나타났다. As 공급시간을 3초에서 증가하였을 때 모든 PL 피크는 1,118 nm로 청색이동하여 나타났으며, PL 세기는 증가하였다. As을 6초 공급한 시료의 PL 세기가 가장 강하게 나타나고, 반치폭(full width at half maximum)도 가장 좁게 나타났다. 이러한 결과는 양자점의 밀도와 균일도(크기변화)로 설명된다. 또한 발광파장에 따른 PL 소멸시간은 PL 피크 근처에서 가장 길게 나타났다.

Silicon doping effects on the optical properties of $In_{0.64}Al_{0.36}Sb$ grown on GaAs substrates

  • 김희연;류미이;임주영;신상훈;김수연;송진동
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.159-159
    • /
    • 2010
  • 본 논문은 테라헤르츠 소스로 저온 InGaAs를 대체하기 위한 저온 $In_{0.64}Al_{0.36}Sb$의 실리콘(Si) 도핑 농도에 따른 광학적 특성 변화를 photoluminescence (PL)과 time-resolved PL (TRPL) 측정을 이용하여 분석하였다. $In_{0.64}Al_{0.36}Sb$ 시료는 분자선 엑피탁시 (molecular beam epitaxy)법으로 GaAs 기판 위에 약 $420^{\circ}C$에서 $3.7\;{\mu}m$ 두께 성장하였다. Si은 $In_{0.64}Al_{0.36}Sb$ 시료에서 도핑 농도가 낮을 때는 어셉터(acceptor)로 작용하다가 도핑 농도가 증가함에 따라 도너(donor)로 작용하였다. 본 연구에 사용한 $In_{0.64}Al_{0.36}Sb$ 시료의 Si 도핑 농도는 $4.5{\times}10^{16}\;cm^{-3}$ (n형), $4{\times}10^{16}\;cm^{-3}$ (n형), $8{\times}10^{15}\;cm^{-3}$ (n형), $1{\times}10^{15}\;cm^{-3}$ (p형), $4{\times}10^{14}\;cm^{-3}$ (p형)인 다섯 개의 시료를 사용하였다. Si 도핑한 시료의 PL 피크는 undoped 시료보다 약 100-200 nm 단파장에서 나타나고 PL 세기도 크게 증가하였다. 그러나 Si 도핑 농도가 가장 낮은 n형과 p형 시료의 PL 피크가 가장 짧은 파장 (높은 에너지)에 나타나고 도핑 농도가 증가함에 따라 장파장으로 이동함을 보였다. n형 시료의 도핑 농도가 $8{\times}10^{15}\;cm^{-3}$에서 $4.5{\times}10^{16}\;cm^{-3}$로 증가하였을 때 PL 피크는 1232 nm에서 1288 nm까지 장파장쪽으로 이동하였으며, p형 시료는 도핑 농도가 $4{\times}10^{14}\;cm^{-3}$에서 $1{\times}10^{15}\;cm^{-3}$로 증가하였을 때 PL 피크가 1248 nm에서 1314 nm로 이동함을 보였다. 또한 시료 온도에 따른 PL 결과는 온도가 증가함에 따라 PL 피크는 장파장으로 이동하면서 PL 세기는 급격하게 감소하고 약 100 - 150 K에서 소멸하였다. 그러나 ~1500 nm 이상 장파장 영역에 매우 넓은 새로운 피크가 나타났으며 온도가 증가함에 따라 PL 세기가 증가함을 확인하였다. Si 도핑 농도에 따른 운반자 수명시간 변화를 TRPL을 이용하여 측정하였다. 운반자 수명시간은 double exponential function을 이용하여 얻었다. Si 도핑 시료의 운반자 수명시간이 undoped 시료에 비해 매우 길게 나타났으며, Si 도핑 시료에서는 p형 시료들보다 n형 시료들의 운반자 수명시간이 길게 나타났다. PL 방출파장에 따른 운반자 수명시간은 Si 도핑 농도에 따라 다르게 나타났다. 이러한 PL과 TRPL 결과로부터 $In_{0.64}Al_{0.36}Sb$의 발광 특성 및 운반자 동역학은 Si 도핑에 크게 영향을 받는다는 것을 확인하였다.

  • PDF

Si 기판 위에 성장한 CdTe/ZnTe 양자점의 크기에 따른 열적 활성화 에너지와 운반자 동역학

  • 이주형;최진철;이홍석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.340-341
    • /
    • 2013
  • 양자점(Quantum dots; QDs)은 단전자 트랜지스터, 레이저, 발광다이오드, 적외선 검출기와 같은 고효율 광전소자 응용을 위해 활발한 연구가 진행되고 있다. II-VI 족 화합물 반도체는 III-V 족 화합물 반도체와 비교했을 때 더 큰 엑시톤 결합에너지(exciton binding energy)를 가지는 우수한 특성을 보이고 있으며 이러한 성질을 가지는 II-VI 족 화합물 반도체 중에서도 넓은 에너지 갭을 가지는 CdTe 양자점은 녹색 영역대의 광전자 소자로서 활용되고 있다. 기존의 CdTe/ZnTe 양자점을 성장하기 위해 ZnTe와 격자부정합이 적은 GaAs 기판을 이용한 연구가 주를 이룬 반면 Si기판을 이용한 연구는 미흡하다. 하지만 Si 기판은 GaAs 기판에 비해 값이 싸고, 여러 분야에 응용이 가능하며 대량생산이 가능하다는 이점을 가지고 있어 초고속, 초고효율 반도체 광전소자의 제작을 가능케 할 것으로 기대된다. 또한 양자점의 고효율 광전소자에 응용을 위해서는 Si 기판 위에 양자점의 크기를 효율적으로 조절하는 연구 뿐 아니라 양자점의 크기에 따른 운반자 동역학에 대한 연구도 중요하다. 본 연구에선 분자선 에피 성장법(Molecular Beam Epitaxy; MBE)과 원자층 교대 성장법(Atomic Layer Epitaxy; ALE)을 이용하여 Si 기판 위에 성장한 CdTe/ZnTe 양자점의 크기에 따른 광학적 특성을 연구하였다. 저온 광 루미네센스(PhotoLuminescence; PL) 측정 결과 양자점의 크기가 증가함에 따라 더 낮은 에너지영역으로 피크가 이동하는 것을 확인하였다. 그리고 온도 의존 광루미네센스 측정 결과 양자점의 크기가 증가함에 따라 열적 활성화 에너지가 증가하는 것을 관찰하였는데, 이는 양자점의 운반자 구속효과가 증가하였기 때문이다. 또한 시분해 광루미네센스 측정 결과 CdTe/ZnTe 양자점의 크기가 증가함에 따라 소멸 시간이 긴 값을 갖는 것을 관찰하였는데, 이는 양자점의 크기가 증가함에 따라 엑시톤 진동 세기가 감소하였기 때문이다. 이와 같은 결과 Si 기판 위에 성장한 CdTe/ZnTe 양자점의 크기에 따른 열적 활성화 에너지와 운반자 동역학에 대해 이해 할 수 있었다.

  • PDF

InGaAs/InAlAs 양자우물구조의 발광특성에 대한 In0.4Al0.6As 버퍼층 성장온도의 영향 (Growth Temperature Effects of In0.4Al0.6As Buffer Layer on the Luminescence Properties of InGaAs/InAlAs Quantum Well Structures)

  • 김희연;류미이;임주영;신상훈;김수연;송진동
    • 한국진공학회지
    • /
    • 제20권6호
    • /
    • pp.449-455
    • /
    • 2011
  • $In_{0.4}Al_{0.6}As$ 버퍼층의 성장온도 변화에 따른 $In_{0.5}Ga_{0.5}As/In_{0.5}Al_{0.5}As$ 다중양자우물(multiple quantum wells, MQWs)의 광학적 특성을 포토루미네션스(photoluminescence, PL)와 시간분해 포토루미네션스(time-resolved PL, TRPL) 측정을 이용하여 분석하였다. $In_{0.4}Al_{0.6}As$ 버퍼층은 기판의 온도를 $320^{\circ}C$에서 $580^{\circ}C$까지 다양하게 변화시키며 $1{\mu}m$ 성장하였으며, 그 위에 $In_{0.5}Al_{0.5}As$ 층을 $480^{\circ}C$에서 $1{\mu}m$ 성장한 후 InGaAs/InAlAs MQWs을 성장하였다. MQWs는 6-nm, 4-nm, 그리고 2.5-nm 두께의 $In_{0.5}Ga_{0.5}As$ 양자우물과 10-nm 두께의 $In_{0.5}Al_{0.5}As$ 장벽으로 이루어졌다. 4-nm QW과 6-nm QW로부터 PL 피크가 나타났으나, $In_{0.4}Al_{0.6}As$ 성장온도 변화가 가장 큰($320^{\circ}C$에서 $580^{\circ}C$까지 변화) 시료는 6-nm QW에서의 PL 피크만 나타났다. 낮은 온도($320^{\circ}C$에서 $480^{\circ}C$까지 변화)에서 성장한 $In_{0.4}Al_{0.6}As$ 버퍼층 위에 성장한 MQWs의 PL 특성이 우수하게 나타났다. 발광파장에 따른 TRPL 결과로 4-nm QW과 6-nm QW에서의 캐리어 소멸시간을 얻었다.