DOI QR코드

DOI QR Code

Luminescence Properties of InAs/GaAs Quantum Dots Grown by MEE Method

MEE법으로 성장한 InAs/GaAs 양자점의 발광특성

  • Oh, Jae Won (Department of Physics, Kangwon National University) ;
  • Byun, Hye Ryoung (Department of Physics, Kangwon National University) ;
  • Ryu, Mee-Yi (Department of Physics, Kangwon National University) ;
  • Song, Jin Dong (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology)
  • 오재원 (강원대학교 물리학과) ;
  • 변혜령 (강원대학교 물리학과) ;
  • 류미이 (강원대학교 물리학과) ;
  • 송진동 (한국과학기술연구원 광전융합시스템연구단)
  • Received : 2013.01.19
  • Accepted : 2013.03.20
  • Published : 2013.03.30

Abstract

The luminescence properties of InAs/GaAs quantum dots (QDs) grown by a migration enhanced epitaxy method have been investigated by using photoluminescence (PL) and time-resolved PL measurements. The MEE method supplies materials in a series of alternate depositions with migration enhancing time between each deposition. After In source was supplied for 9.3 s, the growth was interrupted for 5 s. Subsequently, As source was open for 3 (AT3), 4(AT4), 6 (AT6), or 9 s (AT9), and the growth was interrupted for 5 s again. This growth sequence was repeated 3 times for the growth of InAs QDs. The PL peak of the AT3 was 1,140 nm and the PL intensity was very weak compared with that of the other three samples. The PL peak of all samples except the AT3 sample was 1,118 nm, which is blueshifted from 1,140 nm, and the PL intensity was increased compared to that of the AT3. These results can be explained by the increased QD density and the improved QD uniformity. The AT6 sample showed the strongest PL intensity and the narrowest full width at half maximum. The PL decay time of AT6 increased with increasing emission wavelength from 940 to 1,126 nm, reaching a maximum decay time of 1.09 ns at 1,126 nm, and then decreased as the emission wavelength was increased further.

Migration-enhanced epitaxy 성장한 InAs/GaAs 양자점(quantum dots)의 광학적 특성을 PL (photoluminescence)과 Time-resolved PL 이용하여 분석하였다. InAs 양자점은 In을 9.3초 공급하고 5초 차단한 후 As을 3초, 4초, 6초, 또는 9초 공급하고 5초 차단하는 과정을 3회 반복하여 성장하였다. As을 3초 공급한 시료의 PL 피크는 1,140 nm에서 나타나고, PL 세기는 다른 세 시료에 비해 매우 약하게 나타났다. As 공급시간을 3초에서 증가하였을 때 모든 PL 피크는 1,118 nm로 청색이동하여 나타났으며, PL 세기는 증가하였다. As을 6초 공급한 시료의 PL 세기가 가장 강하게 나타나고, 반치폭(full width at half maximum)도 가장 좁게 나타났다. 이러한 결과는 양자점의 밀도와 균일도(크기변화)로 설명된다. 또한 발광파장에 따른 PL 소멸시간은 PL 피크 근처에서 가장 길게 나타났다.

Keywords

References

  1. Y. Qiu, D. Uhl, R. Chacon, and R. Q. Yang, Appl. Phys. Lett. 83, 1704 (2003). https://doi.org/10.1063/1.1606501
  2. P. Bhattacharya, Z. Mi, J. Yang, D. Basu, and D. Saha, J. Crystal Growth 311, 1625 (2009). https://doi.org/10.1016/j.jcrysgro.2008.09.035
  3. G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, IEEE Photon. Technol. Lett. 13, 230 (2000).
  4. J. Kim, S. Ha, C. Yang, J. Lee, S. Park, W. J. Choi, and E. Yoon, J. Korean Vac. Soc. 19, 217 (2010). https://doi.org/10.5757/JKVS.2010.19.3.217
  5. H. J. Lee, M. -Y. Ryu, and J. S. Kim, J. Korean Vac. Soc. 18, 474 (2009). https://doi.org/10.5757/JKVS.2009.18.6.474
  6. H. Y. Kim, M. -Y. Ryu, and J. S. Kim, J. Lumine. 132, 1759 (2012). https://doi.org/10.1016/j.jlumin.2012.01.057
  7. H. J. Lee, M. -Y. Ryu, and J. S. Kim, J. Appl. Phys. 108, 093521 (2010). https://doi.org/10.1063/1.3506709
  8. J. W. Oh, S. R. Kwon, M. -Y. Ryu, B. Jo, and J. S. Kim, J. Korean Vac. Soc. 20, 442 (2011). https://doi.org/10.5757/JKVS.2011.20.6.442
  9. V. D. Dasika, J. D. Song, W. J. Choi, N. K. Cho, J. I. Lee, and R. S. Goldman, Appl. Phys. Lett. 95, 163114 (2009). https://doi.org/10.1063/1.3243688
  10. B. Jo, C. -R. Lee, J. S. Kim, K. Pyun, S. K. Noh, J. S. Kim, J. -Y. Leem, and M. -Y. Ryu, J. Korean Phys. Soc. 60, 460 (2012). https://doi.org/10.3938/jkps.60.460
  11. S. R. Kwon, M. -Y. Ryu, and J. D. Song, J. Korean Vac. Soc. 21, 342 (2012). https://doi.org/10.5757/JKVS.2012.21.6.342
  12. N. K. Cho, S. P. Ryu, J. D. Song, W. J. Choi, J. I. Lee, and H. Jeon, Appl. Phys. Lett. 88, 133104 (2006). https://doi.org/10.1063/1.2189195
  13. L. Y. Karachinsky, S. Pellegrini, G. S. Buller, A. S. Shokolnik, N. Y. Gordeev, V. P. Evtikhiev, and V. B. Novikov, Appl. Phys. Lett. 84, 7 (2004). https://doi.org/10.1063/1.1637962
  14. Y. P. Varshni, Physica 34, 149 (1967). https://doi.org/10.1016/0031-8914(67)90062-6
  15. O. Madelung, Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology, New Series, III/17a (Springer, Berlin, 1982), p. 297.
  16. G. G. Tarasov, Yu. I. Mazur, Z. Ya. Zhuchenko, A. Maabdorf, D. Nickel, J. W. Tomm, H. Kissel, C. Walther, and W. T. Masselink, J. Appl. Phys. 88, 7162 (2000). https://doi.org/10.1063/1.1323516
  17. Y. C. Zhang, C. J. Huang, F. Q. Liu, B. Xu, J. Wu, Y. H. Chen, D. Ding, W. H. Jiang, X. L. Ye, and Z. G. Wang, J. Appl. Phys. 90, 1973 (2001). https://doi.org/10.1063/1.1385579

Cited by

  1. Optical Properties of InP/InGaP Quantum Structures Grown by a Migration Enhanced Epitaxy with Different Growth Cycles vol.24, pp.3, 2015, https://doi.org/10.5757/ASCT.2015.24.3.67
  2. Luminescence properties of InP/InGaP quantum structures grown by using a migration-enhanced epitaxy at different growth temperatures vol.70, pp.8, 2017, https://doi.org/10.3938/jkps.70.785