• Title/Summary/Keyword: 반응 조건 최적화

Search Result 744, Processing Time 0.033 seconds

Optimization of Solvent Extraction Process on the Active Functional Components from Chinese Quince (모과내 기능성 유용성분 용매추출공정의 최적화)

  • Jeon, Ju-Yeong;Jo, In-Hee;Kyung, Hyun-Kyu;Kim, Hyun-A;Lee, Chang-Min;Choi, Yong-Hee
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.92-98
    • /
    • 2010
  • In this study, various active functional components in Chinese Quince were extracted by solvent extraction method. A central composit design for optimization was applied to investigate the effects of independent variables such as solvent to sample ratio ($X_{1}$), extraction temperature ($X_{2}$), and extraction time ($X_{3}$) on the soluble solid contents ($Y_{1}$), total phenols ($Y_{2}$), electron donating ability ($Y_{3}$), browning color ($Y_{4}$) and reducing sugar contents ($Y_{5}$). It was found that extraction temperature and extraction time were the main effective factors in this extraction process. The maximum soluble solid contents of 35.77% was obtained at 26.38 mL/g ($X_{1}$), 72.82$^{\circ}C$ ($X_{2}$) and 74.86 min ($X_{3}$) in saddle point. Total phenols were rarely affected by solvent ratio and extraction time, but it was affected by extraction temperature. The maximum total phenols of 20.70% was obtained at 22.61 mL/g ($X_{1}$), 84.49$^{\circ}C$ ($X_{2}$), 77.25 min ($X_{3}$) in saddle point. The electron donating ability was affected by extraction time. The maximum electron donating ability of 94.12% was obtained at 10.65 mL/g ($X_{1}$), 67.78$^{\circ}C$ ($X_{2}$), 96.75 min ($X_{3}$) in saddle point. The maximum browning color of 0.32% was obtained at 23.77 mL/g ($X_{1}$), 87.27$^{\circ}C$ ($X_{2}$), 96.68 min ($X_{3}$) in saddle point. The maximum value of reducing sugar content of 10.55% was obtained at 26.83 mL/g ($X_{1}$), 82.167$^{\circ}C$ ($X_{2}$), 81.94 min ($X_{3}$). Reducing sugar content was affected by extraction time.

Optimization of Extraction of Functional Components from Black Rice Bran (흑미 미강의 기능성 성분 추출 공정 최적화)

  • Jo, In-Hee;Choi, Yong-Hee
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.388-397
    • /
    • 2011
  • The purpose of this study was to determine the optimum ethanol extraction conditions for maximum extraction of functional components such as ferulic acid, oryzanol, and toopherol from black rice bran using Response Surface Methodology (RSM). A central composite design was applied to investigate the effects of the independent variables of solvent ratio ($X_{1}$), extraction temperature ($X_{2}$) and extraction time ($X_{3}$) on the dependent variables such as total phenol components ($Y_{1}$), total flavonoids compounds ($Y_{2}$), electron donating ability ($Y_{3}$), $\gamma$-oryzanol ($Y_{4}$), ferulic acid ($Y_{5}$) and $\alpha$-toopherol components ($Y_{6}$). ANOVA results showed that coefficients of determination (R-square) of estimated models for dependent variables ranged from 0.8939 to 0.9470. It was found that solvent ratio and extraction temperature were the main effective factors in this extraction proess. Particularly, the extraction efficiency of ferulic acid, $\gamma$-oryzanol and $\alpha$-toopherol components were significantly affected by extraction temperature. As a result, optimum extraction conditions were 20.35 mL/g of solvent ratio, 79.4$^{\circ}C$ of extraction temperature and 2.88 hr of extraction time. Predicted values at the optimized conditions were acceptable when compared with experimental values.

Effects of Optimized Co-treatment Conditions with Ultrasound and Low-temperature Blanching Using the Response Surface Methodology on the Browning and Quality of Fresh-cut Lettuce (반응표면분석법으로 최적화한 초음파와 저온 블랜칭의 병용처리 조건이 신선편이 양상추의 갈변과 품질에 미치는 영향)

  • Kim, Do-Hee;Kim, Su-Min;Kim, Han-Bit;Moon, Kwang-Deog
    • Food Science and Preservation
    • /
    • v.19 no.4
    • /
    • pp.470-476
    • /
    • 2012
  • Enzymatic action and microbial growth degrade the quality of fresh-cut lettuce. Browning, a bad smell, and softening during storage are the major forms of quality deterioration. Health-oriented consumers tend to avoid foods treated with chemicals to maintain their freshness. This study was conducted to evaluate the change in the quality of fresh-cut lettuce with combined low-temperature blanching (LB) and ultrasonication (US). The optimum condition was selected using the response surface methodology (RSM), through a regression analysis with the following independent variables; the ultrasonication time (X1), blanching temperature (X2), blanching time (X3), and dependent variable; ${\Delta}E$ value (y). It was found that the condition with the lowest ${\Delta}E$ value occurred with combined 90s US and $45^{\circ}C$ 90s LB (US+LB). The combined treatment group (US+LB) was stored at $10^{\circ}C$ for 9 days with the control group and each single-treatment group, with low-temperature blanching and ultrasonication. Overall, the US+LB group had a significantly high $L^*$ value, which indicates significantly low $a^*$, $b^*$, ${\Delta}E$, browning index, PPO, and POD activity values, and a low total bacteria count (p < 0.05). The US+LB group also had the highest sensory score (except for aroma and texture; p > 0.05).

Optimization for Extraction of ${\beta}-Carotene$ from Carrot by Supercritical Carbon Dioxide (초임계 유체에 의한 당근의 ${\beta}-Carotene$ 추출의 최적화)

  • Kim, Young-Hoh;Chang, Kyu-Seob;Park, Young-Deuk
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.411-416
    • /
    • 1996
  • Supercritical fluid extraction of ${\beta}$-carotene from carrot was optimized to maximize ${\beta}$-carotene (Y) extraction yield. A central composite design involving extraction pressure ($X_1$ 200-,100 bar), temperature ($X_2,\;35-51^{\circ}C$) and time ($X_1$$ 60-200min) was used. Three independent factors ($X_1,\;X_2,\;X_3$) were chosen to determine their effects on the various responses and the function was expressed in terms of a quadratic polynomial equation,$Y={\beta}_0+{\beta}_1X_1+{\beta}_2X_2+{\beta}_3X_3+{\beta}_11X_12+{\beta}_22X_3^2+{\beta}_-12X_1X_2+{\beta}_12X_1X_2+{\beta}_13X_1X_3+{\beta}_23X_2X_3,$ which measures the linear, quadratic and interaction effects. Extraction yields of ${\beta}$-carotene were affected by pressure, time and temperature in the decreasing order, and linear effect of tenter point (${\beta}_11$) and pressure (${\beta}_1$) were significant at a level of 0.001(${\alpha}$). Based on the analysis of variance, the model fitted for ${\beta}_11$-carotene (Y) was significant at 5% confidence level and the coefficient of determination was 0.938. According to the response surface of ${\beta}$-carotene by cannoical analysis, the stationary point for quantitatively dependent variable (Y) was found to be the maximum point for extraction yield. Response area for ${\beta}$-carotene (Y) in terms of interesting region was estimated over $10,611{\mu}g$ Per 100 g raw carrot under extraction.

  • PDF

Roasting Conditions for Optimization of Citri Unshii Pericarpium Antioxidant Activity Using Response Surface Methodology (반응표면분석을 이용한 진피의 항산화 활성 최적화를 위한 로스팅 조건 확립)

  • Hwang, Hyun Jung;Park, Jeong Ah;Choi, Jeong In;Kim, Hee Soo;Cho, Mi Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.2
    • /
    • pp.261-268
    • /
    • 2016
  • This study was conducted to establish roasting conditions for optimization of Citri Unshii Pericarpium antioxidant activity using response surface methodology (RSM). A central composite design was applied to investigate the effects of two independent variables, namely roasting temperature ($40{\sim}100^{\circ}C$; $X_1$) and roasting time ($5{\sim}15min$; $X_2$), on responses such as electron donating ability ($Y_1$), total phenolic content ($Y_2$), total flavonoid content ($Y_3$), and hydroxyl radical scavenging activity ($Y_4$). The maximum electron donating ability was 72.38% at a roasting temperature of $71.12^{\circ}C$ and roasting time of 9.39 min. The maximum total phenolic content was 10.76 mg tannic acid equivalents/g at a roasting temperature of $69.71^{\circ}C$ and roasting time of 8.39 min. The maximum total flavonoid content was 105.99 mg quercetin equivalents/100 g at $72.54^{\circ}C$ and 8.64 min. The maximum hydroxyl radical scavenging activity was 60.33% at $68.97^{\circ}C$ and 9.84 min. Based on the superimposition of three dimensional RSM with respect to electron donating ability, total phenolic content, total flavonoid content, and hydroxyl radical scavenging activity under various conditions, optimum conditions were established as follows: roasting temperature of $70.90^{\circ}C$ and roasting time of 9.03 min.

Optimization of Ethanol Extraction of $\gamma$-oryzanol and Other Functional Components from Rice Bran (미강의 $\gamma$-oryzanol 및 생리활성물질의 에탄올 추출공정 최적화)

  • Jo, In-Hee;Choi, Yong-Hee
    • Food Science and Preservation
    • /
    • v.17 no.2
    • /
    • pp.281-289
    • /
    • 2010
  • We determined the optimum ethanolic conditions for extraction of $\gamma$-oryzanol and other functional components from rice bran, using response surface methodology (RSM). A central composite design was used to investigate the effects of the independent variables of solvent ratio ($X_1$), extraction temperature ($X_2$), and extraction time ($X_3$), on dependent variables including yield ($Y_1$), total phenolic content ($Y_2$), electron-donating activity ($Y_3$), ferulic acid level ($Y_4$), and $\gamma$-oryzanol concentration ($Y_5$). Solvent ratio and extraction temperature were the most important factors in extraction. The maximum yield was at 22.56 mL/g ($X_1$), 78.19C ($X_2$), and 522.15 min ($X_3$), at the saddle point. Total phenolic levels were little affected by solvent ratio or extraction temperature. The maximum concentration of extracted total phenolics was 90.78mg GAE/100 g at 21.26 mL/g, $94.65^{\circ}C$, and 567.97 min. A maximum electron-donating ability of 54.72% was obtained with the parameters 20.20 mL/g,$81.89^{\circ}C$, and 701.87 min, at the highest point. The maximum level of ferulic acid components was 210.47 mg/100g at 5.22 mL/g, $79.66^{\circ}C$, and 575.24 min. In addition, the maximum $\gamma$-oryzanol concentration was 660.39 mg/100g at 5.10 mL/g, $81.83^{\circ}C$, and 587.39 min. The optimum extraction conditions were a solvent ratio of 10.45 mL/g, $80^{\circ}C$ extraction temperature, and 535 min extraction time. Predicted extraction levels under optimized conditions were in line with experimental values.

Optimization of Biotransformation Process for Sodium Gluconate Production by Aspergillus niger (Aspergillus niger를 이용한 글루콘산 나트륨 생산 생변환 공정의 최적화)

  • 박부수;조병관;이상윤;임승환;김동일;김병기
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.309-314
    • /
    • 1999
  • In order to produce high concentration of sodium gluconate, optimization of the fermentation conditions, such as glucose concentration, inoculum size, dissolved oxygen concentration and glucose feeding method, was examined. When the glucose concentration was maintained in the range of 30∼50 g/L during the batch fermentation, glucose conversion yield and productivity were 92.2% and 6.0 g/L/hr, respectively. In the case of the low concentration below 30 g/L, the yield decreased by about 25%. As the inoculum size increased above 20%(w/v), lag phase was shortened but the productivity decreased. The dissolved oxygen level of 60∼70% was shown to be the threshold point for 75% of increase in the productivity of sodium gluconate. Finally, optimal glucose feeding rate was determined using various feeding methods such as exponential feeding, feeding based on the average glucose consumption rate and was determined using various feeding methods such as exponential feeding, feeding based on the average glucose consumption rate and on the oxygen uptake rate and etc. Our result shows that glucose feeding, based on the oxygen uptake rate is a very simple, efficient and robust method, especially when oxygen is consumed as a substrate for the bioconversion. Using the above glucose feeding strategy under the optimized condition, 255 g/L of sodium gluconate concentration, 12 g/L/hr of productivity and 95% of glucose conversion yield were achieved with A. niger ACM53.

  • PDF

Statistical Optimization of Solid Growth-medium for Rapid and Large Screening of Polysaccharides High-yielding Mycelial Cells of Inonotus obliquus (단백다당체 고생산성의 Inonotus obliquus 균주의 신속 개량을 위한 고체 성장배지의 통계적 최적화)

  • Hong, Hyung-Pyo;Jeong, Yong-Seob;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.142-154
    • /
    • 2010
  • The protein-bound innerpolysaccharides (IPS) produced by suspended mycelial cultures of Inonotus obliquus have promising potentials as an effective antidiabetic as well as an immunostimulating agents. To enhance IPS production, intensive strain improvement process should be carried out using large amount of UV-mutated protoplasts. During the whole strain-screening process, the stage of solid growth-culture was found to be the most time-requiring step, thus preventing rapid screening of high-yielding producers. In order to reduce the cell growth period in the solid growth-stage, therefore, solid growth-medium was optimized using the statistical methods such as (i) Plackett-Burman and fractional factorial designs (FFD) for selecting positive medium components, and (ii) steepest ascent (SAM) and response surface (RSM) methods for determining optimum concentrations of the selected components. By adopting the medium composition recommended by the SAM experiment, significantly higher growth rate was obtained in the solid growth-cultures, as represented by about 41% larger diameter of the cell growth circle and higher mycelial density. Sequential optimization process performed using the RSM experiments finally recommended the medium composition as follows: glucose 25.61g/L, brown rice 12.53 g/L, soytone peptone 12.53 g/L, $MgSO_4$ 5.53 g/L, and agar 20 g/L. It should be noted that this composition was almost similar to the medium combinations determined by the SAM experiment, demonstrating that the SAM was very helpful in finding out the final optimum concentrations. Through the use of this optimized medium, the period for the solid growth-culture could be successfully reduced to about 8 days from the previous 15~20 days, thus enabling large and mass screening of high producers in a relatively short period.

Optimization of Microwave-Assisted Process for Extraction of Effective Components from Mosla dinthera M. (마이크로파 추출공정에 의한 쥐깨풀 유용성분의 추출조건 최적화)

  • Lee Eun-Jin;Kwon Young-Ju;Noh Jung-Eun;Lee Jeong-Eun;Lee Sung-Ho;Kim Jae-Keun;Kim Kwang-Soo;Choi Yong-Hee;Kwon Joong-Ho
    • Food Science and Preservation
    • /
    • v.12 no.6
    • /
    • pp.617-623
    • /
    • 2005
  • Response surface methodology (RSM) was applied to microwave-assisted process (MAP) extraction for effective components from Mosla dianthera M. Microwave power (2,450 MHz, 0-160 W) and extraction time (1-5 min) were used as independent variables ($X_i$) for central composite design to yield 10 different extraction conditions. Optimum conditions were predicted for dependent variables of $75\%$ ethanol extracts, such as total yield($Y_1$), total phenolics($Y_2$), total flavonoids($Y_3$), and electron donation ability($Y_4$, EDA). Determination coefficients ($R^2$) of regression equations for dependent variables ranged from 0.8397 to 0.9801, and microwave power was observed to be more influential than extraction time in MAP. The maximal values of each dependent variable predicted at different extraction conditions of microwave power (W) and extraction time (min) were as follows; $6.76\%$ of total yield at 142.00 W and 4.36 min, 78.68 mg/g of total phenolics at 136.78 W and 4.40 min, 6.75 mg/g of total flavonoids at 159,69 W and 3.17 min, and $49.81\%$ of EDA at 133.87 W and 4.47 min, respectively. The superimposed contour maps for maximizing dependent variables illustrated the MAP conditions of 79 to 113 W in power and of 2.73 to 3.84 min in extraction time.

Monitoring of Quality Characteristics of Chungkookjang Products during Storage for Shelf-life Establishment (청국장 제품의 유통기한 설정을 위한 저장중의 품질 특성 monitoring)

  • Kim, Dong-Myung;Kim, Seong-Ho;Lee, Jin-Man;Kim, Ji-Eun;Kang, Sun-Chul
    • Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.132-139
    • /
    • 2005
  • The major obstacle in the popularization of Chungkookjang is the short shelf-life of $2{\sim}3$ months and some problems concerning storage including the growth of molds even in the products even within shelf-life. To solve these problems we conducted a research to improve its storage by using the vacuumed packaging and sanitary method through seed culture, innoculation and sterilization. For the optimization of storage time, temperature and sterilization temperature, we measured viable cell numbers of bacteria and fungi, amount of gas outbreak and contents of amino type nitrogen and monitored these experimental results by response surface methodology of SAS program, so that we could observe the quality changes of Chungkookjang during shelf-life. Especially fungi, which are the biggest troublemaker in Chungkookjang shelf-life, couldn't be detected from the generally and vacuum-packed samples; also, viable cell numbers were highly influenced by sterilization temperature and in vacuum-packed samples. In the case of vacuum-packed samples, amount of gas outbreak was highly influenced by sterilization temperature of its storage conditions and it was higher in generally packed samples as compared to vacuum-packed samples even at any storage conditions. The changes of pH in generally and vacuum-packed samples were highly influenced by the storage temperature. As the temperatures of storage and sterilization were higher and the storage time was longer, so the amount of gas outbreak was accordingly lower. These results showed that amino type nitrogen contents in generally and vacuum-packed samples were systematically influenced by the temperature, storage time and sterilization temperature. Also the result showed that the change of amino type nitrogen contents during storage was less in vacuum-packed samples than in general ones. Based on the above results, we can produce Chungkookjang products with extended shelf-life of as far as 6 months without any quality change using sanitary manufacturing method, vacuumed packaging condition, sterilization in $70^{\circ}C$ for 60 minutes and storage under $10^{\circ}C$ during shelf-life. According to this research, we have the possibility to greatly increase the goods value of Chungkookjang by developing the manufacture processing and packaging.