• Title/Summary/Keyword: 반응 조건 최적화

Search Result 744, Processing Time 0.039 seconds

Study on non-nickel-based sealing of anodic porous aluminum oxide by using NaAlO2 (알루민산 염을 포함한 다공성 알루미나의 무니켈 봉공처리제에 관한 연구)

  • Kim, Mun-Su;Yu, Hyeon-Seok;Choe, Jin-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.190.1-190.1
    • /
    • 2016
  • 봉공처리법은 다공성 알루미나를 제조 후에 내마모성의 증가, 침지된 염료의 봉인 등을 필요로 하여 이용하는 후처리 공정 중 하나이다. 상업적으로는 물 봉공처리나 니켈-아세트산 용액을 이용한 봉공처리를 주로 이용하지만 고온을 필요로 하거나 인체에 유독한 용액을 사용, 혹은 추가적인 봉공처리를 해주어야 한다는 단점들을 가지고 있다. 이에 본 연구에서는 독성이 적고 상온에서도 다공성 알루미나와 쉽게 반응할 수 있는 알루미늄 음이온 용액을 봉공처리에 이용하였다. 알루미늄 음이온 용액을 이용한 봉공처리는 알루미늄의 양극 산화를 진행한 이후에 알루미늄 음이온을 포함한 봉공처리제를 제조 후, 침지 처리하는 방식으로 봉공처리하였다. 봉공처리제의 pH 변화, 온도 변화, 침지 시간 등의 변수 요소에 따라서 최적화를 진행하였으며, 이 용액으로 봉공처리가 가능한지 주사 전자 현미경 분석을 통해 평가하였다. 이후 최적화된 조건과 기존에 상업적으로 사용하던 봉공처리법을 거친 후에 경도, 부식전위 검사, 내화학성 검사를 통해 성능의 변화를 확인하였으며 광전자 분광기를 통해 성분과 메카니즘을 예측하였다.

  • PDF

The Impacts of Operational Conditions on Charcoal Syngas Generation using a Modeling Approach (구동 조건에 따른 숯 합성가스 생산 효과 모델링)

  • Wang, Long;Hong, Seong Gug
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.107-119
    • /
    • 2013
  • 바이오매스 가스화는 세계적인 증가 추세에 있는 에너지 수요를 충족할 수 있는 기술 중의 하나이다. 바이오매스 가스화를 통해서 농업 폐기물 등 다양한 바이오매스 자원을 에너지로 전환할 수 있고 $CO_2$ 배출량 또한 줄일 수 있다. 본 연구에서는 COMSOL$^{(R)}$ 3.4 소프트웨어를 이용하여 바이오매스 원료와 운전 조건에 따른 가스화 효율 및 합성가스 조성의 변화를 분석하였다. 원료와 구동조건을 최적화하기 위해 가스화 모델을 세우고 원료와 구동조건을 달리하여 합성가스의 성분을 분석 및 예측하였다. 이 모델은 물리적인 실험을 통해 알고 있는 조건을 통해서 합성가스 성분을 시간에 따라 예측할 수 있다. 모델을 이용하여 함수비 5~30 %, 공기중 산소함량 5~50 %, 공기공급 유량 5~45 L/min, 온도 973~1273 K의 조건에서 합성가스의 성분을 예측한 결과 실제 실험 결과와 일치하는 것을 알 수 있다. 모델링 결과 양질의 합성가스를 생산하려면 원료의 회분함량이 적어야 하고 수소 함량이 높은 합성가스를 생산하려면 반응 온도가 높게 유지되고 원료의 함수비가 높아야 한다. 가스화장치의 온도를 높이면 합성가스의 성분 중 CO의 함량이 많아지고, CO의 함량이 많아지면 가스의 발열량이 높아지는 것을 알 수 있다. 또한 CO의 농도가 높고 발열량이 높은 합성가스를 생산하기 위해서는 ER값은 작아야 한다.

Conversion of Red-macroalgae Eucheuma spinosum to Platform Chemicals Under Ferric Chloride-catalyzed Hydrothermal Reaction (Ferric chloride를 이용한 Eucheuma spinosum으로부터 플렛폼 케미컬의 생산)

  • Jeong, Gwi-Taek;Kim, Sung-Koo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.293-300
    • /
    • 2020
  • Eucheuma spinosum, red macro-algae, contains carrageenan as the major polysaccharide and is commercially produced in Indonesia, Malaysia, Philippines, China and Tanzania. In this study, E. spinosum was converted to sugar and platform chemicals (5-HMF, levulinic acid, formic acid) via FeCl3-catalytic hydrothermal reaction. In addition, statistical methodology (3-level 3-factor Box-Behnken design) was applied to optimize and evaluate the effects of reaction factors (reaction temperature, catalyst concentration and reaction time). As a result of optimization, the concentration of 5-HMF was obtained to be 2.96 g/L at 160 ℃, 0.4 M FeCl3 and 10 min. Optimal conditions of levulinic and formic acids were determined at 200 ℃, 0.6 M FeCl3 and 30 min, and the concentrations were obtained to be 4.26 g/L and 3.77 g/L, respectively.

Optimization for Hot Water Extraction Process of Cordyceps militaris using Response Surface Methodology (반응표면분석법에 의한 동충하초 열수추출공정의 최적화)

  • 윤광섭;정용진;이기동;신승렬;구재관
    • Food Science and Preservation
    • /
    • v.9 no.2
    • /
    • pp.184-188
    • /
    • 2002
  • This study was conducted to optimize hot water extraction process of cordyceps militaris for development beverage. Optimal condition for hot water extraction was investigated with changes in extraction concentration and temperature by response surface methodology. The content of soluble solid was effected with concentration. The efficiency of extraction for turbidity, total sugar, reducing sugar and protein increased with low concentration. The response variables had significant with concentration and the established polynomial model was suitable (p>0.05) model by lack-of-fit analysis. Optimal extraction conditions as the limited renditions of 2.0∼2.4% extractable solids, 1.5∼2.0% brix, l14∼120 $\mu\textrm{g}$/g total sugar, 10.5∼11.0 $\mu\textrm{g}$/g reducing sugar and 110∼l15 $\mu\textrm{g}$/g protein were 95∼100$\^{C}$ and 4.0∼4.1% of concentration.

Diacylglycerol Production by Enzymatic Glycerolysis of Soybean Oil. (대두유에서 글리세롤리시스 반응을 이용한 디글리세리드의 효소적 생산)

  • 박경준;안은영;권기석;김강성;강성태
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.1
    • /
    • pp.84-90
    • /
    • 2004
  • Diglyceride (DG) was prepared by reaction of soybean oil and glycerol in the presence of lipase. The initial rate of DG production was greatly affected by the amount of lipase. However the DG content at equilibrium was hardly affected by the amount of lipase added to the reaction mixture. The initial rate of FFA formation was highly affected by the moisture content between 0.5 and 2.3%, but at higher water content (3.3-5.2%), there was a small increase in the rate. And DG content at equilibrium slowly increased with the increase of the water content in glycerol up to 4.4%. However, there was a sharp decrease in DG content at higher water content (5.2-6.4%) due to higher free fatty acid production. The highest yield of DC was obtained at the temperature ranges of 30-5$0^{\circ}C$. The final yield of DG was not dependent on the glycerol (GL) to triglyceride (TG) molar ratio. However, at the molar ratio of 0.75:1 (GL/TG), the enzyme-catalyzed reaction was highly efficient and utilized all the glycerol. In optimized conditions for glycerolysis a yield of approximately 45% DG was obtained. 66% of total DG was 1,3-DG.

Optimization the Xylose Fractionation Conditions of Pepper Stem with Dilute Sulfuric Acid (농업부산물 고추대 (Pepper Stem)을 이용한 묽은 황산 자일로즈 분별공정의 최적화)

  • Won, Kyung-Yoen;Oh, Kyeong-Keun
    • KSBB Journal
    • /
    • v.24 no.4
    • /
    • pp.361-366
    • /
    • 2009
  • Response surface methodology (RSM) was used for optimization the fraction conditions of xylose from pepper stem with dilute sulfuric acid. The independent variables were acid concentration in the range of 1.134 to 2.866%, reaction temperatures in the range of 142.68 to $177.32^{\circ}C$, and hydrolysis time in the range of 6.34 to 23.66 min. were studied. The dependent variables were xylose yield from pepper stem, and the production of by-products, for example, furfural, acetic aicd, HMF etc. Experimental results had a good match with statistical result. The maximum xylose yield obtained in this experiment was 71% concentration.

Furfural Production From Xylose by Using Formic Acid and Sulfuric Acid (포름산 및 황산 촉매를 이용한 자일로스로부터 푸르푸랄 생산)

  • Lee Seungmin ;Kim Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.561-569
    • /
    • 2023
  • Furfural is a platform chemical that is produced from xylose, one of the hemicellulose components of lignocellulosic biomass. Furfural can be used as an important feedstock for phenolic compounds or biofuels. In this study, we compared and optimized the conditions for producing furfural from xylose in a batch system using two types of catalysts: sulfuric acid, which is commonly used in the furfural production process, and formic acid, which is an environmentally friendly catalyst. We investigated the effects of xylose initial concentration (10 g/L~100 g/L), reaction temperature (140~200 ℃), sulfuric acid catalyst (1~3 wt%), formic acid catalyst (5~10 wt%), and reaction time on the furfural yield. The optimal conditions according to the type of catalyst were as follows. For sulfuric acid catalyst, 3 wt% of catalyst concentration, 50 g/L of xylose initial concentration, 180 ℃ of temperature, and 10min of reaction time resulted in a maximum furfural yield of 59.0%. For formic acid catalyst, 5 wt% of catalyst concentration, 50 g/L of xylose initial concentration, 180 ℃ of temperature, and 150 min of reaction time resulted in a furfural yield of 65.3%.

Enzymatic Extraction of Pilocarpine from Pilocarpus jaborandi (Pilocarpus jaborandi로부터 필로카르핀의 효소반응추출)

  • Cho, Jun-Ho;Bhattarai, Saurabh;Oh, Tae-Jin;Jang, Jong Hwa
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.236-241
    • /
    • 2013
  • Pilocarpine is an imidazole alkaloid, found exclusively in the Pilocarpus genus, with huge pharmaceutical importance. In order to extract pilocarpine from Pilocarpus jaborandi, environmentally friendly enzyme-assisted extraction was applied. Viscozyme$^{(R)}$ L, a commercially available enzyme cocktail, was used for the study. The conditions for extraction were optimized on the basis of substrates, enzymes, temperatures and pHs. Optimum conditions for extraction with the highest yield were 30 h reaction of 100 mg substance at $45^{\circ}C$ in 40 ml of 50 mM acetic acid, pH 4. A 10% enzyme concentration was found to be the best for extraction. Total pilocarpine content after extraction was analyzed by HPLC. The total pilocarpine content ($1.14{\mu}g/mg$) obtained from Viscozyme$^{(R)}$ L treatment was 3.08-fold greater than those of the control treatment ($0.37{\mu}g/mg$).

Optimization of Extraction Conditions from Omija(Schizandra chinensis Baillon) by Response Surface Methodology (반응표면 분석을 이용한 오미자 추출조건의 최적화)

  • Lee Won-Young;Choi Si-Young;Lee Bo-Su;Park Ju-Sek;Kim Mi-Ja;Oh Sang-Lyong
    • Food Science and Preservation
    • /
    • v.13 no.2
    • /
    • pp.252-258
    • /
    • 2006
  • To find the optimum extraction condition of dried omija, central composite experimental design having three independent variable (extraction temperature, extraction time and water ratio) with five levels was conducted for response surface analysis. The maximum of soluble solid was predicted to the extraction conditions of over 25 fold water ratio, $7{\sim}8hr$ and $75^{\circ}C$. Total acid, total phenol, reducing sugar and vitamin C were predicted to respectively 30 fold water ratio, 6 hr, $70^{\circ}C$, 30 fold water ratio, $6{\sim}7\;hrs,\;80^{\circ}C$ and 30 fold water ratio, $6{\sim}8\;hr,\;80^{\circ}C$, 25 fold water ratio, $5{\sim}6hr,\;80^{\circ}C$ extraction condition. Turbidity of extraction condition. Turbidity of extraction condition was 7 over 25 ford water ratio and over $60^{\circ}C$. From the superimposing results of response variables, the optimum extraction condition was predicted 25 folds water ratio, 6 hr and $65{\sim}70^{\circ}C$.

Optimization of sterilization conditions for the production of retorted steamed egg using response surface methodology (반응표면분석을 이용한 레토르트 계란찜의 살균조건 최적화)

  • Cheigh, Chan-Ick;Mun, Ji-Hye;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.331-338
    • /
    • 2018
  • The purpose of this study was to determine the optimum sterilization conditions for the production of retorted steamed egg using response surface methodology. Sterilization processes for eighteen conditions using varying sterilization temperature ($X_1$), time ($X_2$), and method ($X_3$) as the independent variables were carried out through a $3^2{\times}2$ experimental factorial design. Quality evaluations after sterilization included measurements of $F_0$ value ($Y_1$), peak stress ($Y_2$), pH ($Y_3$), color value ($Y_{4-6}$), and organoleptic test [preference for appearance ($Y_7$), overall acceptability ($Y_8$), and preference for texture ($Y_9$) and egg taste ($Y_{10}$)]. Dependent variables ($Y_{1-10}$) of eighteen conditions were more affected by temperature and time than by the sterilization method. Eight factors were selected among the dependent variables as significant factors related to the quality of the steamed egg. Finally, by establishing an optimum range of each dependent variable and contour analysis, the optimum sterilization conditions for the production of steamed egg were determined to be $120^{\circ}C$ for 25 min using a 2-step sterilization process.