• Title/Summary/Keyword: 반응유동

Search Result 935, Processing Time 0.029 seconds

Numerical Study of Heat and Mass Transfer Characteristics in Microchannel Steam Methane Reforming Reactor (마이크로채널 메탄 수증기 개질 반응기의 열 및 물질 전달 특성에 관한 수치해석 연구)

  • Jeon, Seung-Won;Lee, Kyu-Jung;Cho, Yeon-Hwa;Moon, Dong-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.885-894
    • /
    • 2012
  • A numerical study of a microchannel steam methane reforming reactor has been performed to understand the characteristics of heat and mass transfer. The integration of Rh-catalyzed steam methane reforming and Pt-catalyzed methane combustion has been simulated. The reaction rates for chemical reactions have been incorporated into the simulation. This study investigated the effect of contact time, flow pattern (parallel or counter), and channel size on the reforming performance and temperature distribution. The parallel and counter flow have opposite temperature distribution, and they show a different type of reaction rate and species mole fraction. As the contact time decreases and channel size increases, mass transfer between the catalyst layer and the flow is limited, and the reforming performance is decreased.

Re-carbonation of Calcined Limestone Under Oxy-Circulating Fluidized Bed Combustion Conditions (순산소 순환유동층 연소 조건에서 생석회의 재탄산화 반응)

  • Kim, Ye Bin;Gwak, You Ra;Keel, Sang In;Yun, Jin Han;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.856-863
    • /
    • 2018
  • In order to investigate the re-carbonation behaviors of limestones in an oxy-circulating fluidized bed combustor (Oxy-CFBC), the re-carbonation characteristics of domestic 4 different limestone samples were analyzed in a thermogravimetric analyzer (TGA-N1000) with the higher concentration of $CO_2$. Effect of reaction temperature ($600{\sim}900^{\circ}C$) and $CaCO_3$ content (77~95%) of limestones were determined and the mass change of the CaO was observed. Under the temperature of $800^{\circ}C$, the conversion rate increased with increasing reaction temperature. However, the conversion rate decreased with increasing reaction temperature over $800^{\circ}C$. In the case of $CaCO_3$ content, the conversion was remarkably different at $870^{\circ}C$. In addition, reaction rate equations for simulating the re-carbonation of limestone by using gas solid reaction models were proposed in this study.

Oscillation Characteristics of Turbulent Channel Flow with Wall Blowing (채널유동에서 질량분사에 의한 표면유동의 진동 특성)

  • Na, Yang;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.62-68
    • /
    • 2009
  • The interaction between wall blowing and oxidizer flow can generate a very complicated flow characteristics in combustion chamber of hybrid rockets. LES analysis was conducted with an in-house CFD code to investigate the features of turbulent flow without chemical reactions. The numerical results reveal that the flow oscillations at a certain frequency exists on the fuel surface, which is analogous to those observed in the solid propellant combustion. However, the observation of oscillating flow at a certain frequency is only limited to a very thin layer adjacent to wall surface and the strength of the oscillation is not strong enough to induce the drastic change in temperature gradient on the surface. The visualization of fluctuating pressure components shows the periodic appearance of relatively high and low pressure regions along the axial direction. This subsequently results in the oscillation of flow at a certain fixed frequency. This implies that the resonance phenomenon would be possible if the external disturbances such as acoustic excitation could be imposed to the oscillating flow in the combustion chamber.

Analysis of Three Dimensional Liquid Ramjet Engine with Spray and Combustion (액체 램제트 엔진의 3차원 분무 및 연소 반응 해석)

  • 오대환;임상규;손창현;이충원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.18-24
    • /
    • 1999
  • Liquid ramjet combustor is closely connected with complex phenomena due to a series of processes such as intake air, spray, mixing, and combustion. The present numerical experiments were peformed to investigate these flow characteristics for two and three dimensional liquid ramjet combustor. Grid system was made with three domains: intake region where air is supplied and fuel is injected, combustor and nozzle region, and exit atmosphere region. The numerical results showed that two and three dimensional flow patterns in recirculation region of combustor were significantly different each other and spray model was necessary to predict correctly the chemical reaction flow characteristics. Numerically examined for two different location of fuel injector, one is located on the bottom position of curved intake and the other is located on the top position. We found that bottom position of fuel injector is better than top position because fuel influx to the recirculation region which is need to sustain chemical reaction is more than the latter.

  • PDF

Axial Solid Holdup in a Circulating Fluidized Bed Plasma Reactor under Reduced Pressure (감압 순환유동층 플라즈마 반응기의 축방향 고체체류량)

  • Park, Sounghee
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.527-532
    • /
    • 2016
  • The effects of gas velocity and solid circulation rate on the axial solid holdup distribution have been determined in a 10 mm-I.D. ${\times}$ 800 mm-high circulating fluidized bed plasma reactor under reduced pressure (1torr). Polystyrene polymer powder and nitrogen gas are used as solid and gas materials respectively. The change of solid circulation rate by a large gas flow rate of the riser (40~80 sccm) is also possible by a relatively small gas flow rate of the solid recirculation part (6.6~9.9 sccm). The solid circulation rate in the reactor under reduced pressure increases with increasing aeration velocity in the solid recirculation part. The axial solid holdup in the riser decreases from the dense at the bottom to the dilute phase at the top section of the riser. Solid holdups at the axial positions in the riser increase linearly with increasing solid circulating velocity. From these results, we could determine the position of plasma load for good plasma ignition, maintain and plasma reaction.

Recycling Water Treatment of Aquaculture by Using Three Phase Fluidized Bed Reactor (삼상유동층 반응기를 이용한 양어장 순환수 처리에 관한 연구)

  • LEE Byung-hun;KIM Jeong-sook;KANG Im-suk
    • Journal of Aquaculture
    • /
    • v.7 no.3
    • /
    • pp.177-187
    • /
    • 1994
  • The objective of the present study were to evaluate nitrification characteristics and determine optimum treatment conditions of three phase fluidized bed reactor for recycling water treatment of aquaculture. When the loading rates were 2.739-0.086kg $COD/m^3/day$ and 1.575-0.128kg $NH_4\;^+-N/m^3/day$, COD and ammonia removal efficiencies were $56.3-94.7\%\;and\; 67.3­92.6\%$, respectively. The maximum removal rates of COD and ammonia were 1200mg/l/day and 488mg/l/day, respectively. Ammonia removal rates were more than $90\%$ beyond 1hr HRT. The ammoniaremoval efficiency was sensitive to the variation of media concentration and air flowrate.

  • PDF

A Study of Hydrodynamics and Reaction Characteristics in Relation to the Desulfurization Temperatures of Zn-Based Solid Sorbent in the Lab-scale High Pressure and High Temperature Desulfurization Process (실험실규모 고온고압건식탈황공정의 수력학적 특성 및 탈황온도에 따른 아연계 탈황제의 반응특성 연구)

  • Kyung, Dae-Hyun;Kim, Jae-Young;Jo, Sung-Ho;Park, Young Cheol;Moon, Jong-Ho;Yi, Chang-Keun;Baek, Jeom-In
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.492-498
    • /
    • 2012
  • In this study, hydrodynamics such as solid circulation rate and voidage in the desulfurizer and the reaction characteristics of Zn-based solid sorbents were investigated using lab-scale high pressure and high temperature desulfurization process. The continuous HGD (Hot Gas Desulfurization) process consist of a fast fluidized bed type desulfurizer (6.2 m tall pipe of 0.015 m i.d), a bubbling fluidized bed type regenerator (1.6 m tall bed of 0.053 m i.d), a loop-seal and the pressure control valves. The solid circulation rate was measured by varying the slide-gate opening positions, the gas velocities and temperatures of the desulfurizer and the voidage in the desulfurizer was derived by the same way. At the same gas velocities and the same opening positions of the slide gate, the solid circulation rate, which was similar at the temperature of $300^{\circ}C$ and $550^{\circ}C$, was low at those temperatures compared with a room temperature. The voidage in the desulfurizer showed a fast fluidized bed type when the opening positions of the slide gate were 10~20% while that showed a turbulent fluidized bed type when those of slide gate were 30~40%. The reaction characteristics of Zn-based solid sorbent were investigated by different desulfurization temperatures at 20 atm in the continuous operation. The $H_2S$ removal efficiency tended to decrease below the desulfurization temperature of $450^{\circ}C$. Thus, the 10 hour continuous operation has been performed at the desulfurization temperature of $500^{\circ}C$ in order to maintain the high $H_2S$ removal efficiency. During 10 hour continuous operation, the $H_2S$ removal efficiency was above 99.99% because the $H_2S$ concentration after desulfurization was not detected at the inlet $H_2S$ concentration of 5,000 ppmv condition using UV analyzers (Radas2) and the detector tube (GASTEC) which lower detection limit is 1 ppmv.

Numerical Fluid Dynamic Study for Improvement of Mixing Efficiency in the Contactor (접촉 반응조 혼합효율 향상을 위한 전산 유체역학적 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Joh, Jing-Young;Choi, Jun-Ho;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.860-865
    • /
    • 2006
  • The characteristics of flow field and turbulent mixing efficiency of SS in non-aerated contacting reactor are critical design parameters directly affecting on the efficiency of the overall process of wastewater treatment system. To this end, in this study numerical fluid dynamic calculation has been made to investigate the flow field and concentration distribution of SS in terms of specification(shape and dimension) of impeller and other operating conditions. As the first step, the performance of the computer program developed was successfully evaluated by the comparison of the typical flow field with the type of impeller with that appeared in open literature. Further, a series of parametric investigations are made in terms of interesting parameters such as the type and dimension of impeller, location, and number of impeller, etc. A number of useful conclusions obtained by numerical calculation are the superiority of mixing efficiency of pitched type than the flat one together with the visible increase of the overall mixing effect by the employment of the larger impeller and increase of the impeller number, etc.

A Study on CFD Analysis of Internal Flow for GaN Growth Reactor (CFD를 이용한 GaN 성장로 내부 유동해석 연구)

  • Jung, Eui-Man;Kwon, Hey-Lim;Choi, Joo-Ho;Jang, Seok-Pil;Jang, Hyun-Sool;Lee, Hae-Yong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.618-619
    • /
    • 2010
  • LED는 기존의 발광원에 비해 훨씬 높은 파워와 효율성으로 인해 최근 들어 각종 조명이나 교통신호 등에서 사용이 급증하고 있다. LED 재료를 위해 지금까지 여러가지가 연구되어 왔는데, 갈륨 질화물 (Gallium Nitride, GaN)에 기반한 시스템이 최근들어 가장 큰 관심을 받고 있다. GaN 방식은 열적으로 매우 안정성이 있고, 1.9 ~ 6.2 eV 범위의 넓은 밴드의 Gap, 그리고 인듐이나 알루미늄과 결합하여 청, 녹, 백색등의 다양한 빛을 발생할 수 있는 장점을 가지고 있다. 예를 들어 청색 LED는 광학 방식의 기록매체에, 백색 LED는 기존의 조명램프의 대체용으로 활용이 가능하다. 이러한 장점 덕분에 GaN기반 LED 시장은 1994년에 최초로 상용화 된 이래 최근 급격한 성장을 보여 왔다. 그러나 GaN은 다른 III~V 타입의 반도체 재료와는 달리 재료가 성장하기 위해 사파이어와 같은 별도의 기판을 필요로 하는 문제가 있다. 이것은 결국 전위발생과 같은 격자의 부조화 같은 문제를 야기하여 결국 LED의 성능을 떨어뜨리는 요인이 된다. 이러한 문제를 해결하기 위해 HVPE(Hydride Vapor Phase Epitaxy) 방법이 개발되었는데, 이 방법은 시간당 100 미크론의 매우 빠른 성장속도로 높은 두께의 레이어를 만드는 장점이 있다. 이렇게 성장된 GaN 레이어는 베이스 기판에서 쉽게 분리되어 활용이 가능하다. 그러나 HVPE 기술은 성장 공정에서 두께를 균일하게 만들도록 제어하는 것이 매우 어렵다는 문제가 있다. 따라서 HVPE 방식에서는 이러한 조건을 만족시키기 위해 반응현상에 대한 물리적 해석을 토대로 공정조건을 정밀하게 설계해야 한다. 이를 위해 최근에 실험 또는 시뮬레이션을 활용하여 이러한 공정조건을 향상시키기 위한 여러 연구가 진행되었다. 본 연구에서는 이러한 연구의 일환으로 반응로에 투입되는 여러 기체의 유량과 존별 주변온도 조건을 입력변수로 하고, 이들이 GaN 성장에 미치는 영향을 분석하였다. HVPE 시스템에서 가장 이상적인 목표는 반응기체가 층류유동을 유지하면서 대부분의 반응이 기판위에서 이뤄지며, 기판위에서 성장되는 재료의 두께가 균일하게 되는 것이다. 입력변수들이 이러한 결과에 어떠한 영향을 미치는 지 분석하기 위해 전산유체역학(CFD, Computational Fluid Dynamics)을 수행하는 상용코드 FLUENT를 사용하였다. 보다 실제에 가까운 해석을 위해서는 기체간의 화학반응을 포함해야 하나, 해석의 편의와 효율을 위해 본 연구에서는 열 및 유동해석만을 수행하였다. 한편 실제 반응로의 우수성은 성장속도와 두께분포의 균일도를 통해 평가된다. CFD 해석을 통해 이들을 분석하기 위해 기존에 수행한 실험조건을 해석하고 해석결과의 유동패턴/압력분포를 실험결과의 성장속도/두께분포와 비교하고, 이중에서 관련성이 높은 해석결과변수를 우수성 평가에 활용하였다. 기존의 실험결과를 토대로 이러한 중요 결과변수와 함께 이들에 대한 목표값이 도출되고 나면, 입력 공정조건 - 사용기체의 유량과 주변온도 조건 - 에 대해 실험계획(DOE,Design of Experiment)을 수립하고 목표성능을 구현하기 위한 최적설계를 수행할 수 있다. 일반적으로 CFD를 통해 최적의 설계나 공정조건을 탐색하는 작업은 1회의 CFD 계산시간이 매우 오래 소요되기 때문에 쉽지 않다. 그러나 본 연구에서는 CFD와 DOE의 적절한 조합을 통해 적은 수의 해석을 가지고도 원하는 결과를 효율적으로 얻는 것이 가능함을 입증하고자 한다. 본 발표에서는 아직 이러한 연구가 완성되지 않은 시점에서 제반 연구개요를 소개하고 현 시점까지의 연구 결과 및 향후 계획을 소개하고자 한다.

  • PDF

The Dynamic Characteristics of a Two Phase Fluidized Beds (이상 유동층 반응기의 동특성에 관하여)

  • Suh, Myung-Gyo;Suh, Jung-Ho;Kang, Jun-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.210-213
    • /
    • 1993
  • The purpose of this research was to investigate fluidization characteristics of three solid particles, correlations between voidage and superficial velocity. The inside diameter of a column did not affect the fraction void-superficial velocity relationship for fluidization systems which was obtained as follows: $\frac{u}{u_t}={\varepsilon}^{3.703}----Sea\;Sand$ $\frac{u}{u_t}={\varepsilon}^{3.5665}----long\;Exchange$ $\frac{u}{u_t}={\varepsilon}^{4.066}----GAC$ And the sphericial type media is good for fluidized systems as it maintains low voidage. Actually, if biofilm attached to media (bioparticle), the density became lower in fluidized bed biofilm reactor. Therefore, as the density of media become higher, it is easy to maintain fluidized beds.

  • PDF