• Title/Summary/Keyword: 반응성골재

Search Result 135, Processing Time 0.027 seconds

A Study on the Chemical Reaction of Crushed Aggregates (국내 쇄석골재의 화학반응성 연구)

  • 이장화;김성욱
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.1
    • /
    • pp.136-144
    • /
    • 1995
  • 근래 양질의 하천골재가 거의 고갈상태에 직면함에 따라 쇄석골재의 사용이 보편화되고 있는 우리나라의 실정에 비추어 볼 때 골재의 화학반응에 대한 연구의 필요성이 점차 증대되고 있다. 본 연구에서는 우리나라에서 실제 쇄석골재를 생산하는 238곳 중 63곳의 시료골재를 채취하여 화학적, 광물학적, 모르터 바 분석실험을 실시하여 골재의 화학반응성을 규명하였다. 분석시험 결과 대부분의 시료골재가 화학반응성을 나타내지 않았으나 광물학적 분석에서 유해광물로 알려진 성분들이 여러 시료골재에 포함되어 있었다. 따라서 해사의 사용 등 점차 화학반응 환경이 공존하게 되면 골재의 화학반응이 일어날 가능성이 커지므로 계속적이고 심도있는 연구가 요구되고 있다.

알칼리 골재반응성 평가시험 방법의 이모저모

  • Lee, Jong-Yeol
    • Cement
    • /
    • s.190
    • /
    • pp.32-38
    • /
    • 2011
  • 콘크리트에서 알칼리골재반응은 내구성에 악 영향을 주는 일종의 암이라고 표현할 수 있다. 잠복기간이 길고, 균열이 나타나는 시기도 매우 오래 걸리기 때문이다. 이러한 현상이 1940 년대 알려지면서, 미국 ASTM에는 1950년에 모르타르봉 시험방법이, 1952년에 화학법이 각각 시험방법 규격으로 제정되었다. 국내에서는 한국도로교통연구원을 비롯한 전문연구기관 등에서 화학법 및 모르타르봉 방법으로 연구한 결과, 화학법에서는 일부 골재가 반응성이 있는 것으로 보고 되었으나, 모르타르봉 방법에서는 대상 골재에서 유해가능성이 낮은 것으로 보고되었다. 또한, 그동안은 구조물에서 알칼리골재반응에 의한 피해사례도 보고되지 않았고, 골재의 품질도 양호한 것으로 알려져 왔다. 그러나, 최근들어 서해안 고속도로 일부 구간에서 알칼리골재반응에 의한 포장노면에 균열 및 스폴링 등 심각한 피해사례가 보고되면서 국내에서도 관심이 높아지기 시작하였다. 특히 일본에서는 제 63회 시멘트기술대회 (2009년 5월 22일)에서 팽창기구의 재검토에 대한 이야기가 패널토의에서 제기되었고, 일부 시험방법의 이야기도 나왔다. 그동안의 골재는 현재의 규격만으로도 설명이 가능했는데, 최근의 골재들은 설명이 잘 안 되는 경우가 종종 있다는 이야기다. 이런 이야기들은 일본 지인들과 기술교류를 하면서 많은 이야기를 나누었고, 또한 우연히 문헌들을 독해하던 중 이런 이야기들을 경험한 문헌인 일본 태평양시벤트에서 발간되는 CEM'S 자료를 찾았기에 발췌 정리한 것이다.

  • PDF

Expansion Behavior of Aggregate of Korea due to Alkali-Silica Reaction by ASTM C 1260 Method (ASTM C 1260 실험에 의한 국내 골재의 알칼리-실리카 반응 팽창 특성)

  • Yun, Kyong-Ku;Hong, Seung-Ho;Han, Seung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.431-437
    • /
    • 2008
  • The concrete pavement at Seohae Expressway in Korea has suffered from serious distress, only after four to seven years of construction. The deterioration of ASR has seldom been reported per se in Korea, because the aggregate used for the cement concrete has been considered safe against alkali-silica reaction so far. The purpose of this study is to examine the expansion behavior of aggregates of Korea due to alkali-silica reaction by ASTM C 1260 standard method of the accelerated mortar bar test (AMBT), stereo microscopic analysis, scanning electronic microscope (SEM) analysis, and electron dispersive X-ray spectrometer (EDX) analysis. The results are presented as it follows. The accelerated mortar bar test (AMBT) showed that mica granite and felsite of igneous rocks, aroke, red sandstone and shale of sedimentary rocks, slate of metamorphic rock, and dendrite and quartz of mineral rock showed more expansion than 0.1% at 14 days. But, some sedimentary rocks and metamorphic rocks expanded more than 0.1% at 28 days even though they were less than 0.1% at 14 days. The mortar bars, which showed more than occurred 0.1% expansion, resulted in cracking on surface. SEM and EDX analysis confirmed that the white gel was a typical reaction product of ASR. The ASR gel in Korea mainly consisted of Silicate (Si) and Potassium (K) from the cement. The crack in the concrete pavement was caused by ASR. It seems that Korea is no longer safe zone against alkali-silica reaction.

Evaluation of Alkali-Silica Reactivity for Aggregates in Korea according to Test Methods (시험방법에 따른 국내 골재의 알칼리-실리카 반응성 평가)

  • Yun, Kyong-Ku;Kim, Seong-Kwon;Hong, Seung-Ho;Han, Seung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.689-696
    • /
    • 2008
  • The purpose of this study was to evaluate the alkali-silica reactivity for aggregates in Korea according to test methods: accelerated mortar bar test (AMBT) by ASTM C 1260; chemical test by KS F 2545 (ASTM C 289). The results are as follows: The AMBT (ASTM C 1260) results showed that two (2) igneous rocks (two mica granite and felsite), three (3) sedimentary rocks (arkose, red sandstone and shale), two (2) metamorphic rock (slate and vitric tuff), one (1) mineral (quartz) showed more expansion than 0.1% at 14 days. But, some sedimentary rocks and metamorphic rocks expanded more than 0.1% at 28 days even though they were less than 0.1% at 14 days. Therefore, it is necessary to extend the experimental dates more than 14 days to evaluate the possibility of alkali-aggregate reactivity. The chemical test (KS F 2545) results showed that five (5) igneous rocks (andesite, diabase, granite porphyry, muscovite granite and diorite) were indicative of potentially deleterious expansion, while two (2) igneous rocks (diorite porphyry and quartz porphyry) were possible indicative of expansion, and three (3) igneous rocks (biotite granite, two mica granite and felsite) were indicative of innocuous reactivity. The above results showed that the results from chemical method (KS F 2545) and AMBT (ASTM C 1260) had little relationship.

Controlling Effect of Alkali-Aggregate Reactivity using Mineral Admixtures (광물성 혼화재를 이용한 알칼리-골재 반응 억제 효과)

  • Yun, Kyong-Ku;Kim, Seong-Kwon;Seo, Jae-Yeop;Hong, Seung-Ho;Han, Seung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.255-256
    • /
    • 2009
  • This purpose of this study was to evaluate the controlling effect of alkali-aggregate reactivity using mineral admixtures for aggregates in Korea according to test methods: chemical test by KS F 2545; mortar bar test by KS F 2546; accelerated mortar bat test by ASTM C 1260.

  • PDF

The Experimental Study on The Compressive Strength of Concrete Using High Quality Recycled Fine Aggregate Produced by Sulphuric Water and Low Speed Wet Abrasional (황산수와 저속습식마쇄기로 생산된 고품질 순환 잔골재의 콘크리트 압축강도에 관한 실험적 연구)

  • Choi, Duck-Jin;Lee, Dae-Guen;Kim, Ha-Suk;Kawk, Eun-Gu;Kang, Chul;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.385-388
    • /
    • 2008
  • Recycled fine aggregate has low quality because it contains large amount of old mortar. So, its usage is limited to a lower value-add, such as the roadbed material etc. Also, alkaline water occurred from treatment process of the waste concrete is becoming the cause of environmental problem. Accordingly, this study is to develop on the high quality recycled fine aggregate produced by low speed wet abraser using sulphuric. We investigated the properties of compressive strength of the mortar which was manufactured using recycled fine aggregate containing calcined gypsum produced by earlier mentioned process. Test results indicate that concrete using recycled fine aggregate containing calcined gypsum is higher compressive strength than concrete using other sands.

  • PDF

Preventive Measures on Alkali-Silica Reaction of Crushed Stones (쇄석 골재의 알칼리-실리카 반응 방지 대책)

  • Jun Ssang-Sun;Lee Hyo-Min;Seo Ki-Young;Hwang Jin-Yeon;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.129-137
    • /
    • 2005
  • In Korea, due to the insufficiency of natural aggregates and increasing needs of crushed stones, it is necessary to examine the alkali-silica reaction of the crushed stones. The reaction produces an alkali-silica reaction gel which can imbibe pore solution and swell to generate cracks that are visible In affected concrete. In general, crushed stones are tested by petrograptuc examination, chemical method and mortar-bar method, but the most reliable method Is mortar-bar test. This study tested alkali-silica reactivity of crushed stones of various rock types using ASTM C 227 and C 1260, and compared the results of two test methods. This study also analyzed effects of particle size and grading of reactive aggregate on alkali-silica reaction expansion of mortar-bar. The effectiveness of mineral admixtures to reduce detrimental expansion caused by alkali-silica reaction was investigated through the ASTM C 1260 method. The mineral admixtures used were nv ash, silica fume, metakaolin and ground granulated blast furnace slag. The replacement ratios of 0, 5, 10, 15, 25 and $35\%$ were commonly applied for all the mineral admixtures and the replacement ratios of 45 and $55\%$ were additional applied for the admixtures that could maintain workability. The results indicate that replacement ratios of $25\%$ for ay ash, $10\%$ for silica fume, $25\%$ for metakaolin or $35\%$ for ground granulated blast furnace slag were most effective to reduce alkali-silica reaction expansion under the experimental conditions.

Microstructural Study of Mortar Bar on Akali-Silica Reaction by Means of SEM and EPMA Analysis (알칼리-실리카 반응에 의한 모르타르 봉의 SEM과 EPMA 분석을 통한 미세구조 연구)

  • Jun, Ssang-Sun;Lee, Hyo-Min;Jin, Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.531-537
    • /
    • 2009
  • In this study alkali reactivity of crushed stone was conducted according to the ASTM C 227 that is traditional mortar bar test, and C 1260 that is accelerated mortar bar test method. The morphology and chemical composition of products formed in mortar bar, 3 years after the mortar bar tests had been performed, were examined using scanning electron microscopy (SEM) with secondary electron imaging (SEI) and electron probe microanalysis (EPMA) with backscattered electron imaging (BSEI). The crushed stone used in this study was not identified as being reactive by ASTM C 227. However, mortar bars exceeded the limit for deleterious expansion in accelerated mortar bar test used KOH solution. The result of SEM (SEI) analysis, after the ASTM C 227 mortar bar test, confirmed that there were no reactive products and evidence of reaction between aggregate particles and cement paste. However, mortar bars exposed to alkali solution (KOH) indicated that crystallized products having rosette morphology were observed in the interior wall of pores. EPMA results of mortar bar by ASTM C 227 indicated that white dots were observed on the surface of particles and these products were identified as Al-ASR gels. It can be considered that the mortar bar by ASTM C 227 started to appear sign of alkali-silica reaction in normal condition. EPMA results of the mortar bar by ASTM C 1260 showed the gel accumulated in the pores and diffused in to the cement matrix through cracks, and gel in the pores were found to be richer in calcium compared to gel in cracks within aggregate particles. In this experimental study, damages to mortar bars due to alkali-silica reaction (ASR) were observed. Due to the increasing needs of crushed stones, it is considered that specifications and guidelines to prevent ASR in new concrete should be developed.

Petrographic Examination of Aggregates for Concrete from Maewhacheon A, B area (ASTM C 295) (콘크리트를 위한 매화천 A, B 지역 골재의 암석기재학적 시험 (ASTM C 295))

  • 정지곤
    • Journal of the Mineralogical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.85-98
    • /
    • 2001
  • This study deals with the petrographic examination of aggregates(ASTM C 295) which is one of the methods to diagnose the quality of aggregates for concrete artifacts. A number of examinations including size and sieve analysis, test on the coating material, description of the weathering and contamination condition, petrographic description, and qualitative and quantitative analyses on the rocks and minerals potential to alkali-aggregates reactivity are carried out to examine the quality of aggregates. Petrographic description method examined on the fluvial aggregates from Maewhacheon A, B area, Uljin-gun, Kyungnam province shows that weathering grade ranges from F(fresh) to WS(slightly weathered) and coating material and contamination are not in a harmful condition. The weight percentage of the alkali-aggregates reactive minerals or structurally unstable rocks of the aggregates from study area covers 26% and 19% of all aggregates, respectively. So it is necessary to further identify their quality through the chemical(ASTM C 289) and mortar-bar method (ASTM C 227).

  • PDF