• 제목/요약/키워드: 반응기구

검색결과 541건 처리시간 0.025초

디메틸 에테르 착화에 관한 반응기구 축소 연구 (A Study on the Reduction of Reaction Mechanism for the Ignition of Dimethyl Ether)

  • 류봉우;박성욱;이창식
    • 대한기계학회논문집B
    • /
    • 제35권1호
    • /
    • pp.75-82
    • /
    • 2011
  • 디젤의 대체연료인 디메틸 에테르의 반응기구 축소에 관한 수치해석을 수행하였다. 상세반응기구(79 개의 화학종과 351 개의 반응단계)를 기초로, 최대몰농도 해석과 민감도 해석을 균질 반응기 모델에 적용하였다. 축소반응기구는 상세반응기구의 착화지연기간과 비교하여 구축하였는데, 기준값으로 $7.5{\times}10^{-5}$을 적용했을 때 44 개의 화학종과 166 개의 반응단계로 구성된다. 축소반응기구의 계산 정확도를 검증하기 위하여 두 반응기구를 단일영역 균일예혼합 압축착화 엔진모델에 적용하였고, 축소반응기구의 계산결과는 상세반응기구의 결과와 일치하였다. 따라서 본 연구의 축소반응기구는 계산의 정확도의 손실 없이 DME 를 연료로 사용하는 압축착화엔진의 착화 및 연소 과정을 모사하는데 이용될 수 있다.

ANISN-MCNP 코드를 이용한 월성2호기 반응도제어기구 방사선흐름해석

  • 김용일;진영권;김교윤
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(1)
    • /
    • pp.269-274
    • /
    • 1996
  • 월성원자력발전소 2호기와 같은 CANDU 6형 원자로의 반응도제어기구 설치대에는 여러 반응도제어기구가 삽입되기때문에 원자로심으로부터의 방사선흐름현상으로 인한 방사선피폭이 예상될 수 있는 위치이다. 좁고 긴 반응도제어기구 도관에서의 방사선 흐름으로 인한 반응도제어기구 설치대에서의 방사선량을 예측하기 위해 몬테 칼로 MCNP 코드를 1차원 각분할법 코드인 ANISN과 연계하여 사용하였다. 월성원자력2호기의 상단차폐해석을 위한 ANISN 계산, 도관의 방사선흐름을 평가하기 위한 MCNP 계산, 그리고 반응도제어기구 설치대에서의 방사선량율 평가를 위한 MCNP 계산등 3단계 계산 기법의 적응이 시도되었다.

  • PDF

각분할법을 이용한 월성 2 호기 반응도제어기구의 방사선흐름 해석

  • 김용일;문복자;김교윤
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(1)
    • /
    • pp.263-268
    • /
    • 1996
  • CANDU 6 형 원자로의 반응도제어기구 설치대에 있는 수많은 반응도제어기구들은 원자로심에서 발생한 방사선의 흐름통로를 제공하므로 설치대에서의 방사선 피폭이 예상된다. 이런 반응도제어기구 설치대에서의 방사선량을 예측하기 위하여 1 차원 각분할 전산코드인 ANISN 과 2 차원 각분할 전산코드인 DOT를 사용하여 방사선 차폐해석을 수행하였다. 반응도제어기구 도관을 통과하는 방사선의 흐름에 기인한 월성 2호기 반응도제어기구 설치대 상단에서의 최대 선량율은 31$\mu$Sv/hr 로 설계 목표치 250$\mu$Sv/hr 보다 낮게 평가되었다.

  • PDF

고체산화물 연료전지용 (La,Sr)$MnO_3$-YSZ 복합체 양극의 산소환원 반응기구 및 전극 특성 (Part I: 산소환원 반응기구) (Oxygen Reduction Mechanism and Electrode Properties of (La,Sr)$MnO_3$-YSZ Composite Cathode for Solid Oxide Fuel Cell (Part I: Oxygen Reduction Mechanism))

  • 김재동;김구대;이기태
    • 한국세라믹학회지
    • /
    • 제38권1호
    • /
    • pp.84-92
    • /
    • 2001
  • (La,Sr)MnO$_3$(LSM)-YSZ 복합체 양극의 산소환원 반응기구에 대해 고찰하였다. YSZ를 첨가함에 따라 복합체 양극의 ohmic 저항이 증가하고, 분극 저항은 YSZ를 40 wt%~50 wt% 혼합하였을 때 최소값을 나타내었다. 또한 LSM-YSZ 복합체 양극의 산소환원 반응기구는 1가 산소이온의 표면확산과 산소이온전달반응에 의해서 지배됨을 알 수 있었다. 임피던스 분석 결과에 따르면 고주파수 영역에서 나타나는 반원은 산소이온전달반응으로 산소분압 의존성이 거의 없고, YSZ가 40 wt% 첨가되었을 때 최소값을 나타내었다. 중간주파수 영역에서 나타나는 반원은 1가 산소이온의 표면확산반응으로 산소분압 의존성은 약 1/4이고, YSZ가 40~50 wt% 첨가되었을 때 최소값을 나타냈다. 한편, 저주파수 영역에 나타나는 반원은 가스확산반응으로 산소분압 의존성이 1이고, 온도에 따른 의존성이 거의 없었다.

  • PDF

탄소섬유의 활성화 시 중량감소율에 따른 활성화기구 해석 (Analysis for the Activation Mechanism as a Function of Activation Degrees during Activation of the Carbon Fibers)

  • 노재승
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.240-240
    • /
    • 2003
  • 탄소재료의 가스화속도는 근본적으로 활성자리의 수와 관련되어 있으며, 또한 가스화속도는 활성자리 뿐 아니라 확산제한에 따라 달라진다. 대부분의 탄소재료의 활성화 초기단계는 제한된 활성자리 때문에 반응속도는 느리고, 다음 단계는 총 활성자리가 증가하여 반응속도는 급격히 증가하고, 마지막으로 활성자리가 감소하여 활성화 속도는 감소한다. 이러한 sigmoidal특성을 나타내는 활성화 단계를 기공발달과정으로 설명하면, 활성화 초기에 탄소재료 내부에 이미 존재하는 닫힌 기공이 열리고, 일단 기공이 열리면 성장하게 된다. 이렇게 기공 수가 증가하는 것 뿐 아니라 기공 직경이 증가하여 활성화 과정이 진행될수록 비 표면적 및 기공부피는 증가하는데 이런 일련의 과정을 통하여 활성자리 수는 증가하고 또는 감소한다. 이렇게 기공이 발달하는 과정은 각각의 활성화 단계에서 탄소재료의 비 표면적 측정으로 알 수 있으며, 전반적인 산화속도 변화를 측정하여 반응단계를 추정하게 된다. 대부분의 연구자들은 반응 전체의 평균 산화속도를 측정한 후 활성화 에너지를 구하여 반응조절단계로 활성화 기구를 설명한다. 이 연구에서는 활성화 과정 중에 발생하는 중량감소 단계, 즉 각각의 활성화 단계에 따라 달라지는 반응속도상수를 측정하고, 반응단계별 활성화 에너지를 비교 해석하여 피치계 탄소섬유의 기공발달에 영향을 미치는 활성화 기구를 고찰하고자 하였다.

  • PDF

탄화규소 휘스커의 합성(I) : 반응기구의 율속반응 (Synthesis of Silicon Carbide Whiskers (I) : Reaction Mechanism and Rate-Controlling Reaction)

  • 최헌진;이준근
    • 한국세라믹학회지
    • /
    • 제35권12호
    • /
    • pp.1336-1336
    • /
    • 1998
  • 2단계 열탄소환원법으로 탄화규소 휘스커를 Ar과 H2분위기에서 기상-고상, 2단계, 기상-액상-고상 성장기구를 통해 각각 합성하였다. Ar분위기에서 탄화규소 휘스커는 다음과 같은 반응기구로 성장하였다. SiO2(S)+C(s)-SiO(v)+CO(v) SiO(v)3CO(v)=SiC(s)whisker+2CO2(v) 2C(s)+2CO2(v)=4CO(v) 이때 전체 반응속도는 세번째 반응에 참여하는 탄소에 의해 지배되었다. 따라서 이 반응이 휘스커 합성의 율속반응으로 판단되었다. 한편 H2 분위기에서 탄화규소 휘스커는 다음과 같은 반응기구로 성장하였다.SiO2(s)+C(s)=SiO(v)+CO(v) 2C(s)+4H2(v)=2CH4(v) SiO(v)+2CH4(v)=SiC(s)whisker+CO(v)+4H2(v) 이때 전체 반응속도는 SiO(v) 기체의발생 속도에 의해 지배되었다. 따라서 첫번째 반응이 휘스커 합성의 율속 반응인 것으로 판단되었다.

질화붕소가 스프레이코팅된 흑연과 용융 알미늄간의 진공에서의 반응기구 (Reaction Mechanism between BN-sprayed Graphite and Molten Al in Vacuum)

  • 정재인;임병문;문종호;홍재화;강정수;홍재화;강정수;이영백
    • 한국진공학회지
    • /
    • 제3권1호
    • /
    • pp.39-44
    • /
    • 1994
  • 질화붕소를 스프레이코팅한 흑연과 용융 알미늄간의 진공에서의 반응기구를 여러 가지 분석장치 를 이용하여 조사하였다. 계면에 형성된 화합물층은 잘 정의된 형태를 보였으며 Al4C3 와 Al8B4C7의 혼 합상이 흑연바로 위에 형성되었고 그위는 주로 AIN층으로 이루어져 있었다. 이러한 화합물의 생성과정 과 반응기구를 자유에너지 관점에서 논의하였다. 이러한 방법으로 흑연 보우트를 제조하여 알미늄 증발 에 이용하였을 경우 매우 안정적인 증발 양상을 보였으며 $0.6mu$m/min 이상의 매우 높은 증발율을 얻을 수 있음을 확인하였다. 또한 제조원가가 저렴하고 (TiB2 BN 보우트의 약 1/100)전자빔 증발에 의해 형 성된 피막과 비교하여 손색이 없는 피막을 얻을 수 있어 새로운 저항가열 증발원으로서의 이용 가능성 을 확인하였다.

  • PDF

용융염계에서 자전연소합성법에 의한 α-Si3N4 분말의 제조 (Part 3. 반응기구) (Preparation of α-Si3N4 Powder, in Reaction System Containing Molten Salt, by SHS (Part 3. Reaction Mechanism))

  • 윤기석;양범석;박영철;원창환
    • 한국세라믹학회지
    • /
    • 제41권12호
    • /
    • pp.907-914
    • /
    • 2004
  • [ $Si-NaCl-NH_4Cl-NaN_3$ ]계에서 자전연소에 의한 Si의 질화반응기구에 대하여 알아보았다. 희석제로서 첨가된 NaCl은 질화반응 초기에 Si의 용융에 따른 Si의 성장을 억제하여 완전한 질화반응에 도움을 주는 것으로 나타났다. 또한 $NH_{4}Cl$$NaN_3$는 반응과정 동안 서로 분해하고 결합하여 생성물로서 NaCl을 형성하였고, 이 과정에서의 발열반응은 시편을 예열함으로써 질화반응에 도움을 주었다. 본 반응계에서 주된 질화반응기구는 액상-기상 반응기구였다. 그리고 ${\alpha}-Si_{3}N_4$의 제조를 위한 최적의 펠렛 기공도는 $67-69%\$였다.

제올라이트 촉매상에서의 알킬 방향족 화합물 전환 반응기구에 대한 최근 연구 동향 (Recent Advances in the Mechanistic Studies of Alkylaromatic Conversions over Zeolite Catalysts)

  • 민형기;홍석봉
    • Korean Chemical Engineering Research
    • /
    • 제51권1호
    • /
    • pp.1-9
    • /
    • 2013
  • 제올라이트 촉매를 이용한 알킬 방향족 화합물의 전환은 현대 석유화학 산업에서 큰 비중을 차지한다. 본 총설에서는 제올라이트의 구조적 물리화학적 특성에 따른 알킬 방향족 화합물 전환 반응의 기구에 대해 고찰하였다. 제올라이트의 형상선택성은 알킬 방향족 화합물 전환에 있어서 반응중간체의 생성을 조절함으로써 반응 기구 및 생성물 분포에 직접적인 영향을 미친다. 다양한 알킬 방향족 화합물의 전환 반응에 대하여 반응 중간체의 구조 및 역할에 대한 고찰을 통해 지금까지 알려진 반응기구들을 정리하였다. 아울러 제올라이트 촉매를 기초로 하는 향후 석유화학 공정 개발에 대한 전망을 기술하였다.