DOI QR코드

DOI QR Code

Recent Advances in the Mechanistic Studies of Alkylaromatic Conversions over Zeolite Catalysts

제올라이트 촉매상에서의 알킬 방향족 화합물 전환 반응기구에 대한 최근 연구 동향

  • Min, Hyung-Ki (Department of Chemical Engineering and School of Environmental Science and Engineering, POSTECH) ;
  • Hong, Suk Bong (Department of Chemical Engineering and School of Environmental Science and Engineering, POSTECH)
  • 민형기 (포항공과대학교 화학공학과/환경공학부) ;
  • 홍석봉 (포항공과대학교 화학공학과/환경공학부)
  • Received : 2012.09.27
  • Accepted : 2012.11.05
  • Published : 2013.02.01

Abstract

The transformation of alkylaromatic hydrocarbons using zeolite catalysts play big part in the current petrochemical industry. Here we review recent advances in the understanding of the reaction mechanisms of various alkylaromatic conversions with respect to the structural and physicochemical properties of zeolite catalysts employed. Indeed, the shape-selective nature of zeolite catalysts determines the type of reaction intermediates and hence the prevailing reaction mechanism together with the product distribution. The prospect of zeolite catalysis in the developement of more efficient petrochemical processes is also described.

제올라이트 촉매를 이용한 알킬 방향족 화합물의 전환은 현대 석유화학 산업에서 큰 비중을 차지한다. 본 총설에서는 제올라이트의 구조적 물리화학적 특성에 따른 알킬 방향족 화합물 전환 반응의 기구에 대해 고찰하였다. 제올라이트의 형상선택성은 알킬 방향족 화합물 전환에 있어서 반응중간체의 생성을 조절함으로써 반응 기구 및 생성물 분포에 직접적인 영향을 미친다. 다양한 알킬 방향족 화합물의 전환 반응에 대하여 반응 중간체의 구조 및 역할에 대한 고찰을 통해 지금까지 알려진 반응기구들을 정리하였다. 아울러 제올라이트 촉매를 기초로 하는 향후 석유화학 공정 개발에 대한 전망을 기술하였다.

Keywords

Acknowledgement

Supported by : 한국과학재단, (재)울산테크노파크

References

  1. Tsai, T.-C., Liu, S.-B. and Wang, I., "Disproportionation and Transalkylation of Alkylbenzenes over Zeolite Catalyst," Appl. Catal. A, 181, 355-398(1999). https://doi.org/10.1016/S0926-860X(98)00396-2
  2. Das, J. and Halgeri, A. B., "Design and Development of Zeolite- Based Catalytic Processes for Aromatic Production," Catal. Surv. Asia., 7(1), 3-9(2003). https://doi.org/10.1023/A:1023424422731
  3. Vermeiren, W. and Gilson, J.-P., "Impact of Zeolites on the Petroleum and Petrochemical Industry," Top. Catal., 52, 1131-1161 (2009). https://doi.org/10.1007/s11244-009-9271-8
  4. Baerlocher, C. and McCusker, L. B., "Database of Zeolite Structure, http://www.iza-structure.org/data-bases/".
  5. Al-Khattaf, S., Akhtar, M. N., Odedairo, T., Aitani, A., Tukur, N. M., Kub , M., Musilova-Pavla kova, Z. and ejka, J., "Catalytic Transformation of Methyl Benzenes over Zeolite Catalysts," Appl. Catal. A, 394, 176-190(2011). https://doi.org/10.1016/j.apcata.2010.12.031
  6. Min, H.-K., Cha, S. H. and Hong, S. B., "Mechanistic Insights into the Zeolite-Catalyzed Isomerization and Disproportionation of m-Xylene," ACS Catal., 2, 971-981(2012). https://doi.org/10.1021/cs300127w
  7. Huang, J., Jiang, Y., Marthala, V. R. R. and Hunger, M., "Insight into the Mechanisms of the Ethylbenzene Disproportionation: Transition State Shape Selectivity on Zeolites," J. Am. Chem. Soc., 130, 12642-12644(2008). https://doi.org/10.1021/ja8042849
  8. Min, H.-K., Chidambaram, V. and Hong, S. B., "Diethylated Diphenylethane Species: Main Reaction Intermediates of Ethylbenzene Disproportionation over Large-Pore Zeolites," J. Phys. Chem. C, 114, 1190-1193(2010). https://doi.org/10.1021/jp9094408
  9. Min, H.-K. and Hong, S. B., "Mechanistic Investigations of Ethylbenzene Disproportionation over Medium-Pore Zeolites with Different Framework Topologies," J. Phys. Chem. C, 115, 16124- 16133(2011). https://doi.org/10.1021/jp204945c
  10. Xiong, Y., Rodewald, P. G. and Chang, C. D., "On the Mechanism of Toluene Disproportionation in a Zeolite Environment," J. Am. Chem. Soc., 117, 9427-9431(1995). https://doi.org/10.1021/ja00142a007
  11. Corma, A. and Sastre, E., "Evidence for the Presence of a Bimolecular Pathway in the Isomerization of Xylene on Some Large- Pore Zeolites," J. Catal., 129, 177-185(1991). https://doi.org/10.1016/0021-9517(91)90021-U
  12. Palomares, A. E., Eder-Mirth, G. and Lercher, J. A., "Selective Alkylation of Toluene over Basic Zeolites: An In Situ Infrared Spectroscopic Investigation," J. Catal., 168, 442-449(1997). https://doi.org/10.1006/jcat.1997.1685
  13. Svelle, S., Olsbye, U., Lillerud, K.-P., Kolboe, S. and Bjorgen, M., "Diphenylmethane-Mediated Transmethylation of Methylbenzenes over H-Zeolites," J. Am. Chem. Soc., 128, 5618-5619(2006). https://doi.org/10.1021/ja060931w
  14. Millini, R. and Perego, C., "The Role of Molecular Mechanics and Dynamics Methods in the Development of Zeolite Catalytic Processes," Top. Catal., 52, 42-66(2009). https://doi.org/10.1007/s11244-008-9133-9
  15. Clark, L. A., Sierka, M. and Sauer, J., "Computational Elucidation of the Transition State Shape Selectivity Phenomenon," J. Am. Chem. Soc., 126, 936-947(2004). https://doi.org/10.1021/ja0381712
  16. Weitkamp, J. and Ernst, S., "Catalytic Test Reactions for Probing the Pore Width of Large and Super-Large Pore Molecular Sieves," Catal. Today, 19, 107-150(1994). https://doi.org/10.1016/0920-5861(94)85005-4
  17. Olson, D. H. and Haag, W. O., "Structure-Selectivity Relationship in Xylene Isomerization and Selective Toluene Disproportionation," ACS Symp. Ser., 248, 275-307(1984).
  18. Babu, G. P., Santra, M., Shiralkar, V. P. and Ratnasamy, P. J., "Catalytic Transformation of $C_{8}$ Aromatics over ZSM-5 Zeolites," J. Catal., 100, 458-465(1986). https://doi.org/10.1016/0021-9517(86)90112-0
  19. Rane, S. J. and Chakrabarty, D. K., "Shape Selective Catalysis by Zeolite KZ-1 Synthesis, Characterization and Isomerization of m-Xylene," Appl. Catal., 75, 281-288(1991). https://doi.org/10.1016/S0166-9834(00)83137-1
  20. Sastre, E., Corma, A., Jajula, F., Figueras, F. and Perez-Pariente, J., "Isomerization of Meta-Xylene over Offertite Catalysts," J. Catal., 126, 457-464(1990). https://doi.org/10.1016/0021-9517(90)90012-9
  21. Adair, B., Chen, C.-Y., Wan, K.-T. and Davis, M. E., "Reactions of Meta-Xylene on Zeolites with Intersecting Medium and Large Pores I. Basic Studies," Micropor. Mater., 7, 261-270(1996). https://doi.org/10.1016/S0927-6513(96)00050-8
  22. Jones, C. W., Zones, S. I. and Davis, M. E., "Reactions of m-Xylene on Zeolites with Intersecting Medium and Large Pores Part 2: Aluminum Population in Structures with CON Topology," Micropor. Mesopor, Mater., 28, 471-481(1999). https://doi.org/10.1016/S1387-1811(98)00336-9
  23. Jones, C. W., Zones, S. I. and Davis, M. E., "m-Xylene Reactions over Zeolites with Unidimensional Pore Systems," Appl. Catal. A, 181, 289-303(1999). https://doi.org/10.1016/S0926-860X(98)00401-3
  24. Degnan, T. F., "The Implications of the Fundamentals of Shape Selectivity for the Development of Catalysts for the Petroleum and Petrochemical Industries," J. Catal., 216, 32-46(2003). https://doi.org/10.1016/S0021-9517(02)00105-7
  25. Wei, J. J., "A Mathematical Theory of Enhanced Para-Xylene Selecutivity in Molecular Sieve Catalysts," J. Catal., 76, 433-439(1982). https://doi.org/10.1016/0021-9517(82)90272-X
  26. Morin, S., Gnep, N. S. and Guisnet, M., "A Simple Method for Determining the Relative Significane of the Unimolecular and Bimolecular Pathways of Xylene Isomerization over HY Zeolites," J. Catal., 159, 296-304(1996). https://doi.org/10.1006/jcat.1996.0091
  27. Guisnet, M., Gnep, N. S. and Morin, S., "Mechanisms of Xylene Isomerization over Acidic Solid Catalysts," Micropor. Mesopor. Mater., 35-36, 47-59(2000). https://doi.org/10.1016/S1387-1811(99)00207-3
  28. Chen, N. Y., Kaeding, W. W. and Dwyer, F. G., "Para-Directed Aromatic Reactions over Shape-Selective Molecular Sieve Zeolite Catalysts," J. Am. Chem. Soc., 101, 6783-6784(1979). https://doi.org/10.1021/ja00516a065
  29. Hong, S. B., Min, H.-K., Shin, C.-H., Cox, P. A., Warrender, S. J. and Wright, P. A., "Synthesis, Crystal Structure, Characterization, and Catalytic Properties of TNU-9," J. Am. Chem. Soc., 129, 10870-10885(2007). https://doi.org/10.1021/ja073109g
  30. Roger, H. P., Möller, K. P. and O'Connor, C. T., "The Transformation of 1,2,4-Trimethylbenzene A Probe Reaction to Monitor External Surface Modifications of HZSM-5," Micropor. Mater., 8, 151-157(1997). https://doi.org/10.1016/S0927-6513(96)00081-8
  31. Das, J., Bhat, Y. S. and Halgeri, A. B., "Transalkylation and Disproportionation of Toluene and $C_{9}$ Aromatics over Zeolite Beta," Catal. Lett., 23, 161-168(1994). https://doi.org/10.1007/BF00812144
  32. Roger, H. P., Möller, K. P. and O'Connor, C. T., "The Reaction Network in the Conversion of 1,2,4-Trimethylbenzene over HZSM-5," J. Catal., 176, 68-75(1998). https://doi.org/10.1006/jcat.1998.1987
  33. Park, S.-H., Lee, J.-H. and Rhee, H.-K., "Disproportionation of 1,2,4-Trimethylbenzene over Zeolite NU-87," Korean J. Chem. Eng., 17(2), 198-204(2000). https://doi.org/10.1007/BF02707143
  34. Cejka, J., Kotrla, J. and Krejci, A., "Disproportionation of Trimethyl Benzenes over Large Pore Zeolites: Catalytic and Adsorption Study", Appl. Catal. A, 277, 191-199(2004). https://doi.org/10.1016/j.apcata.2004.09.012
  35. Chao, K.-J. and Leu, L.-J., "Conversion of Toluene and Trimethylbenzene over NaHY Zeolites," Zeolites, 9, 193-196(1989). https://doi.org/10.1016/0144-2449(89)90025-0
  36. Matsuda, T., Asanuma, M. and Kikuchi, E., "Effect of High- Temperature Treatment on the Activity of Montmorillonite Pillared by Alumina in the Conversion of 1,2,4-Trimethylbenzene," Appl. Catal., 38, 289-299(1988). https://doi.org/10.1016/S0166-9834(00)82832-8
  37. Wang, I., Tsai, T.-S. and Huang, S.-T., "Disproportionation of Toluene and of Trimethylbenzene and Their Transalkylation over Zeolite Beta," Ind. Eng. Chem. Res., 29, 2005-2012(1990). https://doi.org/10.1021/ie00106a005
  38. Cartraoul, P., Cointot, A., Gnep, N. S., Guisnet, M., Joly, G. and Tejada, J., "m-Xylene and 1,2,4-Trimethylbenzene Transformation on Mordenites. Influence of the Exchange by Various Cations," Appl. Catal., 21, 85-96(1986). https://doi.org/10.1016/S0166-9834(00)81330-5
  39. Cejka, J. and Wichterlova, B., "Acid-Catalyzed Synthesis of Mono- and Dialkyl Benzenes over Zeolites: Active Sites, Zeolite topology, and Reaction Mechanisms," Catal. Rev. 44(3), 375- 421(2002). https://doi.org/10.1081/CR-120005741
  40. Dumitriu, E., Hulea, V., Kaliaguine, S. and Huang, M. M., "Transalkylation of the Alkylaromatic Hydrocarbons in the Presence of Ultrastable Y Zeolites Transalkylation of Toluene with Trimethylbenzenes," Appl. Catal. A, 135, 57-81(1996). https://doi.org/10.1016/0926-860X(95)00236-7
  41. Krejci, A., Al-Khattaf, S., Ali, M. A., Bejblova, M. and Cejka, J., "Transalkylation of Toluene with Trimethylbenzenes over Large-Pore Zeolites," Appl. Catal. A, 377, 99-106(2010). https://doi.org/10.1016/j.apcata.2010.01.026
  42. Lee, Y.-K., Park, S.-H. and Rhee, H.-K., "Transalkylation of Toluene and 1,2,4-Trimethylbenzene over Large Pore Zeolites," Catal. Today, 44, 223-233(1998). https://doi.org/10.1016/S0920-5861(98)00194-1
  43. Halgeri, A. B. and Prasada Rao, T. S. R., "Transalkylation of Toluene with Trimethyl Benzenes over Nickel Supported Type L-Zeolite Catalyst," Stud. Surf. Sci. Catal., 24, 667-673(1985). https://doi.org/10.1016/S0167-2991(08)65340-9
  44. Hulea, V., Bilba, B., Lupascu, M., Dumitriu, E., Nibou, D., Lebaili, S. and Kessler, H., "Study of the Transalkylation of Aromatic Hydrocarbons over SAPO-5 Catalysts," Micropor. Mater., 8, 201- 206(1997). https://doi.org/10.1016/S0927-6513(96)00059-4
  45. Dumitriu, E., Guimon, C., Hulea, V., Lutic, D. and Fechete, I., "Transalkylation of Toluene with Trimethylbenzenes Catalyzed by Various AFI Catalysts," Appl. Catal. A, 237, 211-221(2002). https://doi.org/10.1016/S0926-860X(02)00329-0
  46. Fernandes, L. D., Monteiro, J. L. F., Sousa-Aguiar, E. F., Martinez, A. and Corma, A., "Ethylbenzene Hydroisomerization over Bifunctional Zeolite Based Catalysts: The Influence of Framework and Extraframework Composition and Zeolite Structure," J. Catal., 177, 363-377(1998). https://doi.org/10.1006/jcat.1998.2111
  47. Moreau, F., Bernard, S., Gnep, N. S., Lacombe, S., Merlen, E. and Guisnet, M., "Ethylbenzene Isomerization on Bifunctional Platinum Alumina-Mordenite Catalysts," J. Catal., 202, 402-412 (2001). https://doi.org/10.1006/jcat.2001.3294
  48. Moreau, F., Moreau, P., Gnep, N. S., Magnoux, P., Lacombe, S. and Guisnet, M., "Ethylbenzene Isomerization over Bifunctional Platinum Alumina-EUO Catalysts: Location of the Active Sites," Micropor. Mesopor. Mater., 90, 327-338(2006). https://doi.org/10.1016/j.micromeso.2005.08.032
  49. Robschlager, K.-H. and Christoffel, E. G., "Reaction Mechanism of Ethylbenzene Isomerization," Ind. Eng. Chem. Prod. Res. Dev., 18(4), 347-352(1979). https://doi.org/10.1021/i360072a023
  50. Arsenova, N., Haag, W. O. and Karge, H. G., "Kinetics Study of Ethylbenzene Disproportionation as a Test Reaction for Acidic Microporous Catalysts," Stud. Surf. Sci. Catal., 94, 441-448(1995). https://doi.org/10.1016/S0167-2991(06)81253-X
  51. $Wei{\beta}$, U., Weihe, M., Hunger, M., Karge, H. G. and Weitkamp, J., "The Induction Period in Ethylbenzene Disproportionation over Large Pore Zeolites," Stud. Surf. Sci. Catal., 105, 973-980(1997). https://doi.org/10.1016/S0167-2991(97)80729-X
  52. Arsenova-Härtel, N., Bludau, H., Haag, W. O. and Karge, H. G., "Influence of the Zeolite Pore Structure on the Kinetics of the Disproportionation of Ethylbenzene," Micropor. Mesopor. Mater., 35-36, 113-119(2000). https://doi.org/10.1016/S1387-1811(99)00212-7
  53. Huang, J., Jiang, Y., Marthala, V. R. R., Bressel, A., Frey, J. and Hunger, M., "Effect of Pore Size and Acidity on the Coke Foramtion during Ethylbenzene Conversion on Zeolite Catalysts," J. Catal., 263, 277-283(2009). https://doi.org/10.1016/j.jcat.2009.02.019
  54. De Vos, D. E., Ernst, S., Perego, C., O'Connor, C. T. and Stocker, M., "Standard Reaction of the International Zeolite Association for Acidity Characterization: Ethylbenzene Disproportionation over LaNaY," Micropor. Mesopor. Mater., 56, 185-192(2002). https://doi.org/10.1016/S1387-1811(02)00484-5
  55. Streitwieser, A. and Reif, L., "Mechanism of Transalkylation of Ethylbenzene," J. Am. Chem. Soc., 82, 5003-5005(1960). https://doi.org/10.1021/ja01503a064
  56. Amelse, J. A., "A Shape Selective Shift in the Mechanism of Transethylation and Its Effect on the Ability to Hydroethylate Ethylbenzene," Stud. Surf. Sci. Catal., 38, 165-176(1988). https://doi.org/10.1016/S0167-2991(09)60653-4
  57. Kim, B. H., Lee, J. G., Yim, T., Kim, H.-J., Lee, H. Y. and Kim, Y. G., "Highly Efficient Two-Step Selective Synthesis of 2,6- Dimethylnaphthalene," Tetrahedron Lett., 47, 7727-7730(2006). https://doi.org/10.1016/j.tetlet.2006.08.102
  58. Millini, R., Frigerio, F., Bellussi, G., Pazzuconi, G., Perego, C., Pollesel, P. and Romano, U., "A Priori Selection of Shape-selective Zeolite Catalysts for the Synthesis of 2,6-dimethylnaphthalene," J. Catal., 217, 298-309(2003). https://doi.org/10.1016/S0021-9517(03)00071-X

Cited by

  1. Fabrication and Characterization of Transparent Conductive Film based on Bacterial Cellulose vol.51, pp.6, 2013, https://doi.org/10.9713/kcer.2013.51.6.766
  2. -Xylene over Medium-Pore Zeolites with Different Framework Topologies vol.4, pp.6, 2014, https://doi.org/10.1021/cs500186y
  3. Semi-pilot Scaled Hybrid Process Treatment of Malodorous Waste Air: Performance of Hybrid System Composed of Biofilter Packed with Media Inoculated with Thiobacillus sp. IW and Return-sludge and Photocatalytic Reactor vol.52, pp.2, 2014, https://doi.org/10.9713/kcer.2014.52.2.191
  4. A Study on Physical Dispersion and Chemical Modification of Graphene vol.53, pp.6, 2015, https://doi.org/10.9713/kcer.2015.53.6.792
  5. -Propylbenzene Disproportionation: An Efficient Tool for Assessing the Framework Topology of Large-Pore Zeolites vol.120, pp.11, 2016, https://doi.org/10.1021/acs.jpcc.6b00758
  6. -Propylbenzene: Identification of Reaction Intermediates and Mechanism vol.120, pp.21, 2016, https://doi.org/10.1021/acs.jpcc.6b02910
  7. 혼합냉매 조성에 따른 C3MR 천연가스 액화공정 성능 비교 vol.20, pp.3, 2014, https://doi.org/10.7464/ksct.2014.20.3.314
  8. 1,2,4-Trimethylbenzene disproportionation over large-pore zeolites: An experimental and theoretical study vol.323, pp.None, 2013, https://doi.org/10.1016/j.jcat.2014.12.029