Communications for Statistical Applications and Methods
/
제5권3호
/
pp.743-754
/
1998
EM 알고리즘은 통계적 화상복원에서 흔히 사용되는 방법이다. 특히 OSL 알고리즘은 다소 복잡한 형태의 페널티 함수가 주어지더라도 쉽게 반복 알고리즘을 유도할 수 있다는 장점을 갖는다. 그러나 이 알고리즘은 평활상수의 매우 제한된 영역에서만 수렴이 허용되어, 화상복원시 실험자의 경험의 폭을 상당히 제약하는 단점을 가지고 있다. 본 논문에서는 OSL 알고리즘을 변형하여, 수렴 허용영역이 확대된 평활상수를 갖는 알고리즘을 제시하고 그 수렴성질을 밝히며, 화상실험을 통해 제안된 알고리즘의 유용성을 밝힌다.
강자성체를 정밀해석하기 위해서는 포화자화 현상과 히스테리시스 현상을 모두 고려해 주어야만 한다. Preisach 모델링은 변화율이 심한 히스테리시스 현상을 매우 잘 표현해 낼 수 있는 수치모사 방법이다. 하지만 정자기 유한요소법과 Preisach 모델링을 사용한 자화해석 반복 과정에서 수렴성이 떨어진다는 큰 문제점을 가지고 있다. 특히 자화율의 기울기가 급격히 변화할 경우 수렴에 많은 문제점을 가지고 있다. 이러한 문제점은 일반적인 M-H 변수를 사용하지 않고, M-B 변수를 사용하면 해결할 수 있다. 본 논문에서는 일반적인 M-H를 이용한 Preisach 모델링의 평면 분포로부터 M-H 변수를 M-B 변수화 시키는 방법을 제안하고 있고, 2차원 정자기 유한요소법과 M-H, M-B 변수를 이용한 Preisach 모델링을 비교 분석하여 Preisach 모델링의 수렴성 문제를 해결하는 방법에 대해 기술하였다.
밀리미터파 대역에서 사용하는 대형 안테나 해석 속도를 개선하기 위한 병렬형 행렬 연산법을 제안한다. 기존의 가우스 소거법을 병렬화하기 위해 행렬 분해와 반복법을 이용한다. 또한, 반복법의 수렴성을 높이기 위해 이전 행렬해를 부분적으로 사용하여 분해 행렬을 구성하는 방식도 제시한다. 본 제안법은 OpenMP, MPI, CUDA 등의 병렬법과 함께 사용할 수 있다.
본 논문은 초기 조건 문제의 관점에서 반복 학습 제어기가 proper 해야 할 필요성에 대하여 연구한다. 반복 학습 제어기가 proper하지 않으면, 모든 반복에 있어서 시스템의 초기 상태와 요구되는 시스템의 상태가 완전히 일치하지 않는다면 학습입력의 크기가 무한대로 증가하는 경우가 생겨 실제 구현이 불가능해진다. 따라서 이론적으로 학습 제어의 수렴이 보장되더라도 proper하지 않은 학습 제어기는 실제 시스템에는 적용할 수 없음을 보인다. 또한 반복 학습 제어 시스템의 초기 조건의 불일치가 시스템의 수렴 특성에 미치는 영향에 대하여 분석한다.
본 논문에서는 경제학, 사회학, 수학 분야에서 수십년 전부터 연구해오던 죄수의 딜레마 게임의 협동진화에 대해 고찰해보고자 한다. 반복적 죄수의 딜레마 게임은 게임이론의 가장 기본적인 이론으로써, 사회적 상호작용, 경제활동, 국제관계 등 다양한 현상들을 모델링 하기 위한 하나의 방법이다. 그 중에 N명이 참가하는 반복적 죄수 딜레마 게임의 전략은 유전 알고리즘(Genetic Algorithms, GAs)을 통해 진화적으로 만들어 낼 수 있으며, 이 경우에 그 결과를 일반적인 내쉬 균형 이 아닌, 모든 개체들이 유전알고리즘을 통해 협동으로 수렴하도록 유도할 수 있다는 사실은 상당히 시사하는 바가 크다. 기존에 주로 연구되어오던 죄수의 딜레마 게임은 협동으로의 수렴과정에서 일반적으로 순위기반선택(Rank-based selection)과 1점 교배기법(1point crossover)을 사용한다. 그러나 순위기반선택은 모든 개체에 순위을 매겨야 하기 때문에, 개체수가 커질수록 성능이 저하되며, 1점 교배기법은 개체 값이 분산되어있을 경우, 최적해(Optimal solution)을 찾기 힘들다는 단점이 있어, 개체수가 많은 경우에 적용하기에는 비효율적이다. 본 논문에서는 토너먼트 선택기법(Tournament selection)과 자기 적응형 교배기법(Self-adaptive crossover)을 적용한 새로운 기법을 제안한다. 또한 기존 기법과 비교 실험을 통해 제안기법이 기존기법에 비해 평균 수렴시간과 수렴 횟수에서 뛰어난 성능을 보이고 있음을 확인하였다.
본 논문에서는 CITE를 포함한 2차 반복 학습제어 방법이 수렴 성능의 향상과 외란에 대한 강인성 향상에 덧붙여 초기 오차가 있음에도 불구하고 이를 극복할 뿐만 아니라 기존의 알고리즘보다 더 빠른 수렴 능력이 있음을 확인한다. 또한 불안정한 결과를 낳는 높은 학습 게인의 경우에도 CITE를 추가한 본 학습제어 방법에 의해 안정화됨으로써, 빠른 수렴 특성과 강인성 향상을 가져올 수 있음을 보인다. 그리고 본 알고리즘을 선형 시변 시스템에 대해 적용한 시뮬레이션 결과를 통해 초기 오차의 극복 능력이 뛰어남을 확인하고, 아울러 각 학습 게인들이 수렴 속도와 안정성에 미치는 영향을 상세히 분석한다.
알고리즘의 용이성과 전역적 최적해로의 수렴가능성 등의 이점을 가진 SA알고리즘은 구조최적화문제에 활발하게 적용되고 있으나 냉각스케줄의 설정, 모호한 종료기준, 과도한 반복해석 등의 문제점을 가지고 있다. 그러므로 본 논문에서는 기존 SA알고리즘의 단점을 보완한 MSA 알고리즘을 개발하고자한다. MSA 알고리즘은 수렴에 요구되는 반복수를 감소시키고 국부최소점이 많은 동적최적화문제의 초기설계 선택의 자율성을 확보하기 위하여 SQ 및 SA의 2단계로 구성하여 개발하였다. 또한 기존 연구에서 제안된 냉각 스케줄에 의한 수렴성 등을 비교분석하여 구조최적화에 적합한 냉각스케줄을 제안하여 그 성능을 평면가새골조 구조물의 최적내진설계에 적용하여 분석하였다.
정칙화 반복복원 과정에 사용되는 정칙화 연산자는 Laplacian 연산자를 주로 사용하고 있으나, 일반적으로 미분 연산자를사용하게 되어있다. 본 논문에서는 정칙화 연산자로서의 일반적인 미분연산자틀과 본 연구실에서 사용 되어 온 I-H 연산자의 성능을 비교, 검토하여 분석하였다. 선형적인 움직임에 의한 훼손된 영상에서는, 평면부분은 I-H 연산자가 Laplacian 연산자보다 복원효과와 MSE의 수렴성이 안정된 것을 알 수 있었으며 윤곽부분은 Laplacian 연산자가 I-H 연산자보다 MSE의 수렴성 및 복원효과가 뛰어남을 알 수 있었다. 가우시안에 의해 훼손된 영상에서는, 융곽부분은 I-H 연산자가 Laplacian 연산자보다 MSE의 수렴성 및 복원효과가뛰어나며 평변부분에서는Laplacian 연산자가 I-H 연산자보다 MSE 변에서 안정적으로 F수렴함을 알 수 있었다. 정칙화 이론은 잡음의 평활화와 윤곽의 복원을 동시에 고려하여 처리하기 때문에 영역을 평면부분과 중간 부분 그리고 윤곽부분으로 나누어서 처리결과에 대한 MSE를 비교하였다. Laplacian 연산자와 I-H 연산자는 정칙화 연산자로 사용하기에 적합하였고 다른 미분 연산자들은 반복횟수에 따라 발산하는 것으로 나타났다.
본 연구에서는 원격탐사 화상의 분류를 목적으로 분광정보와 공간적 상관성의 반복적 결합방법을 제안하였다. 퍼지이론을 기반으로 공간적 상관성을 분류 과정에 적용하기 위하여 초기단계에서 정의된 소속 함수에 대해서 주변영역에 대한 필터링을 적용하였고, 특정 수렴 조건을 만족하는 단계까지 반복적 결합을 수행하였다. Landsat TM 화상에 적용한 결과, 향상된 분류정확도와 분광정보만으로 분류가 애매한 화소의 공간적 분포 양상을 확인할 수 있었다.
국부 반복 복원 처리는 영상 전체를 반복 복원하는 기존의 반복 복원과는 달리, 영상을 국부적으로 구분하여, 변화량이 큰 부분은 기존의 반복 복원으로 처리하고 변화량이 적은 부분은 LOG함수의 특성을 이용하여 신장 시킨 다음 처리하고, 다시 압축시키므로, 기존의 반복 복원 처리보다도 MSE(Mean Square Error)를 월등히 줄일 수 있을 뿐 아니라 변화량이 적은 부분도 처리가 잘되고, 또 기존의 반복처리 방법이 갖는, 적은 메모리 용량의 소요, 비선형 제약조건의 사용 가능, 약간의 변형으로 언제나 수렴성을 보장하는 등의 장점을 모두 가진다. 이 방법을 영상에 적용시킨 결과, MSE의 현저한 감소, 반복횟수 감소에 따른 반복시간 단축을 확인 할 수 있었다. 그러므로, 이 방법은 MSE를 줄이고 또한 처리 시간 단축을 목적으로 하는 영상의 복원에 적용될 수 있는 매우 우수한 방법임을 알 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.