• 제목/요약/키워드: 반류

Search Result 94, Processing Time 0.054 seconds

Study on the Effect of Wake Control Devices on Ship Performance Components (반류제어장치의 선박성능요소에 미치는 영향에 대한 고찰)

  • Lee, Yeon-Seung;Choi, Young-Bok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.453-459
    • /
    • 2009
  • The DSME guide plate(GP) has been developed with the target to improve the cavitation and vibration performance when used with discharging cooling water around the outlet of LNG carrier. It was proven that it could as well be applied as a powerful wake control device on its own, even without discharging cooling water. However, it has to be taken into account that it inevitably results in speed loss. This study shows the possibility to design a GP which simultaneously improves both vibration and speed performance. The study intends to outline how to design the preliminary GP configurations from both the vibration and the speed performance points of view. Further, the study offers design guidance for the hull form and the propeller when adapting GP as a wake control device.

A Characteristic Study of Wake Distribution for Container Carrier (컨테이너선의 반류분포 특성 연구)

  • Park Sung-Woo;Park No-Joon;Yu Yong-Wan
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.51-56
    • /
    • 2005
  • In this paper, a correlation analysis of wake distribution between model test and CFD was described. CFD calculation was performed by 'WAVIS' which is utilized in hullform development. By using the correlation between model test and CFD, we have estimated M/T wake distribution To control M/T and CFD wake distribution effectively. we have developed the program that it is possible to export to TECPLOT and visualize wake distribution.

  • PDF

EDISON CFD를 이용한 저속비대선용 반원형 덕트 에너지 저감장치의 변수연구

  • Park, Seung-Cheol;Choe, Yeong-Min
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.582-587
    • /
    • 2016
  • 연료효율에 대한 선주들의 요구와 그린쉽이라는 사회적 흐름에 맞춰 현재 연료 절감 장치에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 KVLCC2M의 반류개선 및 연료효율 증가를 위한 반원형 덕트의 변수 연구를 진행하였으며, 계산의 신뢰도를 검증하기 위해 서울대학교 선박저항성능 연구실에서 실시한 모형 시험결과와 비교하였다. 반원형 덕트의 크기와 길이방향 위치를 설계변수로 설정하여, 총 12가지 경우에 대한 CFD 계산을 시행하였으며, 계산 결과를 유동 정류를 통한 저항 감소와 반류 개선을 통한 프로펠러의 성능 개선 이라는 두 가지 기준으로 최적 조건을 선정하였다. 또한, 후처리를 통해 계산 결과를 추가적으로 분석하여 에너지 절감의 이론적인 배경을 찾았으며, 이를 바탕으로 반원형 덕트를 개선하여 부채꼴형 덕트를 새로이 설계하였다. 이에 대한 추가적인 계산 결과 최대 4%의 연료절감 효과를 최종 확인하였다.

  • PDF

A Study on the Resistance Performance and Flow Characteristic of Ship with a Fin Attached on Stern Hull (선박 선미부 핀 부착에 의한 저항성능 및 유동 특성에 관한 연구)

  • Lee, Jonghyeon;Kim, Inseob;Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1106-1115
    • /
    • 2021
  • In this study, a fin that controls ship stern flow was attached on stern hull of a 80k bulk carrier to improve resistance performance. The rectangular cross-sectional fin was attached at several locations on the hull, and angle to streamline was changed with constant length, breadth, and thickness. The resistance performance and wake on propeller plane of the hull with and without the fin were analyzed using model-scale computational fluid dynamics simulation. The analysis results were extrapolated to full-scale to compare the performance and wake of the full-scale ship. First, the fin changed path of bilge vortex that flowed into the propeller along the stern hull without the fin to transom stern. This change increased pressure of the stern hull and upper region of the propeller, so pressure resistance and total resistance of the hull were reduced - the nearer the fin location to after perpendicular (AP) and base line of the hull, the larger the reduction of the resistances. Second, nominal wake fraction of the hull with the fin was lower than that without the fin. This dif erence was in proportion to the angle of the fin, but the total resistance reduction was in proportion until a certain angle at which the reduction was maximum. The largest total resistance reduction was approximately 2.1% at 12.5% of length between perpendiculars from the AP, 10% of draft from the base line, and 14° with respect to the streamline.

PIV Measurements of Hull Wake behind a Container Ship Model with Varying Loading Condition and Reynolds number (선박 모형의 하중 (loading)조건 및 Reynolds 수의 변화에 따른 선미 반류의 PIV 속도장 측정)

  • Lee Jung-Yeop;Paik Bu-Geun;Lee Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.54-57
    • /
    • 2005
  • Flow characteristics of hull wake behind a container ship model were investigated experimentally with varying loading condition and Reynolds number. Large-scale bilge vortices of nearly the same strength are formed in the near-wake region. They are symmetric and counter-rotating with respect to the wake centerline for all loading conditions tested. With going downstream for both design and ballast loading conditions, the strength of the bilge vortices decreases and the wake region expands due to diffusion and viscous dissipation. Under the design loading condition, the bilge vortices start to appear at St=0.363 transverse plane above the propeller-boss. For the ballast loading condition, however, the bilge vortices start to appear at St=0.591 below the propeller-boss. They move upward as the hull wake goes downstream and Reynolds number increases. These wake characteristics, under the ballast loading condition, may weaken the propulsion and cavitation performances of the propeller, which are usually optimized for the design loading condition.

  • PDF

Measurement of three-dimensional interfacial wave structures in nearly- horizontal countercurrent statified two-phase flow (근사수평 반류성층 2상유동에서의 3차원 계면파의 구조측정)

  • 이상천
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.599-606
    • /
    • 1988
  • Structures of interfacial waves in nearly-horizontal countercurrent stratified air-water flow have been measured by means of a needle contact method. Based upon a statistical analysis for the liquid film distribution, statistical properties of the waves such as mean film thickness, mean wave amplitude and rms value of the wave fluctuation have been calculated. The results show that the film distribution can be described by a Gaussian probability density function for the three-dimensional wave regime. It is also indicated that the mean film thick ness and the rms value of the wave fluctuation increase as gas and liquid flow rates are increased in countercurrent two-phase flow. The dimensionless intensity of the wave fluctuation may be regarded as a function of the Froude number and the dimensionless mean film thickness.

Study on the calibration of a five-hole Pitot-tube for the wake measurement (반류 계측용 5공 피토관의 캘리브레이션 방법에 관한 연구)

  • Kim, W.J.;Kim, D.H.;Yoon, H.S.;Moon, D.Y.;Van, S.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.11-19
    • /
    • 1997
  • The new definition of calibration coefficients is proposed for a five-hole Pitot tube. Two-angle chart calibration other than one-angle variation is considered to improve the accuracy in the measurement of the three-dimensional velocity fields. Several sets of correlation coefficients are introduced for different shapes of the probe tip. The calibration method with one-angle variation is compared with the new two-angle chart calibration method and the improvement of the present method is clearly shown.

  • PDF

Interfacial shear stresses and friction factors in nearly-horizontal countercurrent stratified two-phase flow (근사수평 반류성층 2상유동에서의 계면전단응력 및 마찰계수)

  • 이상천;이원석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.116-122
    • /
    • 1988
  • Interfacial shear stresses have been determined for countercurrent stratified flow of air and water in a nearly-horizontal rectangular channel, based upon measurements of pressure drop, gas velocity profiles and mean film thickness. A dimensionless correlation for the interfacial friction factor has been developed as a function of the gas and liquid Reynolds numbers. Equivalent surface roughnesses for the interfacial friction factor have been calculated using the Nikuradse correlation and have been compared with the intensity of the wave height fluctuation on the interface. The results show that the interfacial shear stress is mainly affected by turbulent mixing near the interface due to the wave motion rather than by the roughened surface.

Visualization of Unstable Vortical Structure in a Propeller Wake Affected by Simulated Hull Wake (재현된 반류의 영향을 받는 프로펠러 후류 내 불안정한 날개끝 보오텍스 구조에 대한 정량적 가시화)

  • Kim, Kyung-Youl;Paik, Bu-Geun;Ahn, Jong-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.620-630
    • /
    • 2008
  • The characteristics of complicated propeller wake influenced by hull wake are investigated by using a two-frame PIV (Particle Image Velocimetry) technique. As the propeller is significantly affected by the hull wake in a real marine vessel, the measurements of propeller wake under the hull wake would be certainly necessary for more reliable validation and the prediction of numerical simulation with wake modeling. Velocity field measurements have been conducted in a medium-size cavitation tunnel with a hull wake. Generally, the hull wake generated by the boundary layer of ship's hull produces the different loading distribution on the propeller blade in both upper and lower propeller planes. The difference of the propeller wake behaviors caused by the hull wake is discussed in terms of axial velocity, vorticity and turbulence kinetic energy distribution in the present study.