• Title/Summary/Keyword: 박테리아 이동

Search Result 62, Processing Time 0.026 seconds

Microbial Diversity in Three-Stage Methane Production Process Using Food Waste (음식물 쓰레기를 이용한 3단계 메탄생산 공정의 미생물 다양성)

  • Nam, Ji-Hyun;Kim, Si-Wouk;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.125-133
    • /
    • 2012
  • Anaerobic digestion is an alternative method to digest food wastes and to produce methane that can be used as a renewable energy source. We investigated bacterial and archaeal community structures in a three-stage methane production process using food wastes with concomitant wastewater treatment. The three-stage methane process is composed of semianaerobic hydrolysis/acidogenic, anaerobic acidogenic, and strictly anaerobic methane production steps in which food wastes are converted methane and carbon dioxide. The microbial diversity was determined by the nucleotide sequences of 16S rRNA gene library and quantitative real-time PCR. The major eubacterial population of the three-stage methane process was belonging to VFA-oxidizing bacteria. The archaeal community consisted mainly of two species of hydrogenotrophic methanogen (Methanoculleus). Family Picrophilaceae (Order Thermoplasmatales) was also observed as a minor population. The predominance of hydrogenotrophic methanogen suggests that the main degradation pathway of this process is different from the classical methane production systems that have the pathway based on acetogenesis. The domination of hydrogenotrophic methanogen (Methanoculleus) may be caused by mesophilic digestion, neutral pH, high concentration of ammonia, short HRT, and interaction with VFA-oxidizing bacteria (Tepidanaerobacter etc.).

Verification of Antibacterial Activities of Oriental Herbal Medicine Extracts (한약재 추출물의 항균활성 검증)

  • Lee, Chang-Eun;Jo, Jung-Kwon;Kim, Jae-Deok;Lee, Dong-Geun;Kim, Won-Seok;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.611-616
    • /
    • 2017
  • The antibacterial activities of nine oriental herbal medicine extracts were measured against seven kinds of bacteria known to cause food poisoning and disease. The extracts were prepared with distilled water using an autoclave ($121^{\circ}C$ for 30 min). The extraction yields of nine oriental herbal medicines were in the rage of 0.5%-33.4%. The antibacterial activities were evaluated using the paper-disc method. Extracts of Hwangryeon, Jiyu, and Ohbaeja showed antibacterial activities while the others did not. Extracts of Coptis japonica, Hwangryeon, and Sanguisorba officinalis, Jiyu showed antibacterial activities only against Clostridium perfringens and Listeria monocytogenes. Extracts of Rhus javanica, Ohbaeja showed the strongest antibacterial activities against all the bacteria tested. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of R. javanica extracts were in the range of 2.4~20 mg/ml for the bacteria tested. In conclusion, the extract of R. javanica showed superior antibacterial activities against the seven bacterial strains tested. The MIC and MBC values for each bacterium were represented as strain names (MIC, MBC), which were Bacillus cereus (11.2, 20), Clostridium perfringens (2.4, 4.7), Escherichia coli (9.1, 9.1), Listeria monocytogenes (11.1, 20), Salmonella typhi (4.7, 9.1), Staphylococcus aureus (2.4, 4.7), and Vibrio parahaemolyticus (2.4, 5.3). Further purification and study of this antibacterial material would be helpful for developing antibiotics or promoting synergistic effects with known antibiotics, producing antibacterial material for lengthening the shelf-life of food, and so on.

Seasonal Monitoring of Residual Veterinary Antibiotics in Agricultural Soil, Surface Water and Sediment Adjacent to a Poultry Manure Composting Facility (계분 퇴비화 시설 인근 농경지 토양, 지표수 및 저질토의 계절별 잔류 항생물질 모니터링)

  • Lee, Sang-Soo;Kim, Sung-Chul;Kim, Kwon-Rae;Kwon, Oh-Kyung;Yang, Jae-E.;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.3
    • /
    • pp.273-281
    • /
    • 2010
  • Concentration of antibiotics including a tetracycline group (TCs) of tetracycline (TC), chlortetracycline (CTC), and oxytetracycline (OTC), a sulfonamide group (SAs) of sulfamethoxazole (SMX), sulfathiazole (STZ), and sulfamethazine (SMT), an ionophore group (IPs) of lasalocid (LSL), monensin (MNS), and salinomycin (SLM), and a macrolide group (MLs) of tylosin (TYL) was determined from samples collected from the agricultural soil, stream water, and sediment. For the agricultural soil samples, the concentration of TCs had the highest value among all tested antibiotic's groups due to its high accumulation rate on the surface soils. The lower concentrations of SAs in the agricultural soils may be resulted from its lower usage and lower distribution coefficient (Kd) compared to TCs. The concentration of TCs in stream water was significantly increased through June to September. It would be likely due to soil loss during an intensive rainfall event and a reduction of water level after the monsoon season. A significant amount of TCs in the sediment was also detected due to its accumulation from runoff, which occurred by complexation of divalent cations, ion exchange, and hydrogen bonding among humic acid molecules. To ensure environmental or human safety, continuous monitoring of antibiotics residues in surrounding ecosystems and systematic approach to the occurrence mechanism of antibiotic resistant bacteria are required.

Study on Geochemical Behavior of Heavy Metals by Indigenous Bacteria in Contaminated Soil and Sediment (국내 일부 오염 토양 및 퇴적물 내 토착 미생물에 의한 중금속의 지구화학적 거동 연구)

  • Song, Dae-Sung;Lee, Jong-Un;Ko, Il-Won;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.575-585
    • /
    • 2007
  • Microbial control of the geochemical behavior of heavy metals (Cd, Cu, Pb, and Zn) and As in contaminated subsurface soil and sediment was investigated through activation of indigenous bacteria with lactate under anaerobic condition for 25 days. The results indicated that dissolved Cd, Pb and Zn were microbially removed from solutions, which was likely due to the formation of metal sulfides after reduction of sulfate by indigenous sulfate-reducing bacteria. Soils from the Dukeum mine containing a large amount of sulfate resulted in complete removal of dissolved As after 25 days by microbial activities, while there were gradual increases in dissolved As concentration in soils from the Hwabuk mine and sediments from the Dongducheon industrial area which showed low $SO_4{^2-}$ concentrations. Addition of appropriate carbon sources and sulfate to contaminated geological media may lead to activation of indigenous bacteria and thus in situ stabilization of the heavy metals; however, potential of As release into solution after the amendment should be preferentially investigated.

Pseudomonas aeruginosa Exotoxin A Induces Apoptosis in Chemoresistant YD-9 Human Oral Squamous Carcinoma Cell Line Via Accumulation of p53 and Activation of Caspases (항암제에 저항성을 가지는 YD-9 human oral squamous carcinoma cell line에서 Pseudomonas aeruginosa exotoxin A의 p53 단백질 누적과 caspase를 활성화 경로를 통해 유도된 세포자멸사)

  • Kim, Gyoo-Cheon;Gil, Young-Gi
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1047-1054
    • /
    • 2009
  • Oral squamous carcinoma (OSC) cells present resistance to chemotherapeutic agents-mediated apoptosis in the late stages of malignancy. Advances in the understanding of bacterial toxins have produced new strategies for the treatment of cancers. It was demonstrated here that Pseudomonas aeruginosa exotoxin A (PEA) significantly decreased the viability of chemoresistant YD-9 cells in the apoptosis mechanism. Apoptotic manifestations were evident through changes in nuclear morphology and generation of DNA fragmentation. PEA treatment induced caspase-3, -6 and -9 cleavage, and activation. These events preceded proteolysis of the caspase substrates poly (ADP-ribose) polymerase (PARP), DNA fragmentation factor 45 (DFF45), and lamin A in YD-9 cells. The reduction of mitochondrial membrane potential, release of cytochrome c and SmacjDlABLO from mitochondria to cytosol, andtranslocation of AlF into nucleus were shown. While p53, p21 and $14-3-3{\gamma}$ were upregulated, cyclin Band cdc2 were downregulated by PEA treatment. Taken together, PEA induces apoptosis in chemoresistant YD-9 cells via activation of caspases, mitochondrial events and regulation of cell cycle genes.

Simulating Bacterial Dispersion from Coastal Sewage Outfalls Using the QUICKEST Scheme (QUICKEST법을 사용한 연안해역에서 박테리아 확산의 수치모의)

  • Kang Yun Ho;Lee Moon Ock
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.2
    • /
    • pp.20-30
    • /
    • 1999
  • To improve water quality particularly for sea bathers along the Fylde coastal zone near Blackpool, North West England, waste water from a sewage outfall is studied using a mathematical model. The explicit second order accurate central scheme and the third order accurate QUICKEST scheme are used to represent the diffusion terms and the advection terms of the advective-diffusion equation, respectively. Hydrodynamic model is run for a coarse and fine grid, of 1km and 200m, respectively, obtaining good agreement with measured data. Water quality model is then used to predict faecal coliform levels in the region for four different scenarios, including discharges from: - (i) Fleetwood outfall, (ii)River Ribble for summer condition, (iii)River Ribble for winter condition, and (iv)combined sewer overflows for the Blackpool and Fleetwood communities. Main findings from the simulations are:- (i) Fleetwood outfall has a negligible impact on the beaches with respect to pathogen levels; (ii) Discharge from River Ribble for both summer and winter conditions is predicted in the range of coliform levels 10 -500 counts/100ml along the beach at Lytham St. Annes; and (iii) The CSO effluent discharges are predicted not to advect out into offshore by stronger tidal currents.

  • PDF

Recovery Rate of Nontuberculous Mycobacteria and the Clinical Course of Nontuberculous Mycobacterial Pulmonary Disease at a Secondary Hospital (일개 2차 의료기관에서의 비결핵성 마이코박테리아 분리비율 및 폐질환의 임상 경과)

  • Lee, Jae Kwang;Kwon, Hwuck Young;Kwon, Jong Kyu;Lee, Hwa Jeong;Lee, Dong Wook;Lee, Yu Jin;Yoon, Kyung Hwa;Song, Do Young;Lee, Byung Ki;Kim, Yeon Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.67 no.3
    • /
    • pp.199-204
    • /
    • 2009
  • Background: To examine the recovery rate of nontuberculous mycobacteria (NTM) from respiratory specimens and the clinical course of NTM pulmonary disease at a 700-bed secondary hospital. Methods: This study analyzed the results of 843 acid-fast bacilli (AFB) culture-positive respiratory specimens from 650 subjects collected between May 2003 and April 2008. In addition, the clinical course of NTM pulmonary disease, diagnosed using criteria established by the American Thoracic Society, was examined. Results: There were 67 (7.9%) NTM isolates recovered from 52 (8.0%) subjects. Among the 535 AFB smear-positive specimens, 34 (6.3%) NTM isolates were recovered. There were 33 (10.7%) NTM isolates were recovered from 308 AFB smear-negative specimens. Of 52 subjects with isolated NTM, M. intracellulare was the most common species at 73.1% (n=33), followed by M. kansassi (n=7), M. abscessus (n=2), M. fortuitum (n=2), and M. avium (n=1). Sixteen (30.8%) patients had NTM pulmonary disease and the most common causative organism was M. intracellulare (n=14, 87.5%). Of these, 6 cases attained negative conversion in culture, 4 cases failed to attain negative conversion because of poor cooperation or expiration from complicated underlying lung disease, and 5 cases were transferred to a higher-grade hospital. Conclusion: The recovery rate of NTM from respiratory specimens was relatively low and the most common species was M. intracellulare. Patients with NTM pulmonary disease showed variable clinical outcomes.

Decomposition of Sulfamethoxazole by Catalytic Wet Peroxide Oxidation (촉매습식과산화(CWPO)를 이용한 설파메톡사졸의 분해)

  • Kim, Dul Sun;Lee, Dong-Keun;Kim, Jin Sol
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.293-300
    • /
    • 2018
  • Sulfamethoxazole (SMX) is sulfaamide-based synthetic antibiotics, which are widely prescribed pharmaceutical compound to treat bacterial infections in both human and animals. Most of them are not completely decomposed as refractory substances. The environmental impact of pharmaceuticals as emerging contaminants has generated severe concerns. In this study, catalytic wet peroxide oxidation (CWPO) of SMX was carried out with $Cu/Al_2O_3$ catalyst and investigated the optimum reaction conditions of temperature, dosage of catalyst and concentration of $H_2O_2$ to completely decompose the SMX. It was observed that SMX was completely decomposed within 20 min using 0.79 mM $H_2O_2$ and 6 g $Cu/Al_2O_3$ catalyst at 1 atm and $40^{\circ}C$, but SMX was not fully mineralized and converted to intermediates as hydroylated-SMX, sulfanilic acid, 4-aminobenzenesulfinic acid and nitrobenzene. After that these are completely mineralized through organic acid. We proposed the decomposition reaction path ways of SMX by analyzing the behavior of these intermediates. To investigate the durability of heterogeneous catalyst, decomposition of SMX was observed by continuously recycling catalysts. When the heterogeneous catalyst of 10 wt% $Cu/Al_2O_3$ was continuously reused 5 times, decomposition of SMX was a little lowered, but the activity of catalyst was overall very stable.

Isolation of an Agarase-producing Persicobacter sp. DH-3 and Characterization of its β-agarase (Agarase를 생산하는 Persicobacter sp. DH-3의 분리 및 β-agarase의 특성)

  • Heo, Da-Hye;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.158-163
    • /
    • 2019
  • The purpose of this study was to isolate a new marine agarase-producing bacterium. Agarase can hydrolyze agar and agarose to produce agarooligosaccharides or neoagarooligosaccharides, which possess many physiological functions. Strain DH-3 was isolated from seawater collected from the coast of Yeosu at Jeollanam province, Korea. A 16S rDNA sequence analysis showed this strain to be Persicobacter sp. DH-3. Extracellular agarase was prepared from culture media of Persicobacter sp. DH-3 and used for characterization. Relative activities at 20, 30, 40, 50, 60, and $70^{\circ}C$ were 50, 55, 70, 100, 90, and 50%, respectively. Relative activities at pH 5, 6, 7, and 8 were 75, 100, 90, and 75%, respectively. The enzyme showed maximum activity at $50^{\circ}C$ in a 20 mM Tris-HCl buffer at pH 6. This enzyme could be useful, as agar is in liquid state at $50^{\circ}C$. Agarase activities were maintained at 80% or more for 2 hr at 20, 30, and $40^{\circ}C$. Thin layer chromatography analysis suggested that Persicobacter sp. DH-3 produced extracellular ${\beta}$-agarases as it hydrolyzed agarose to produce neoagarohexaose and neoagarotetraose. In addition, zymogram analysis confirmed that Persicobacter sp. DH-3 produces at least three agar-degrading enzymes with molecular weights of 45, 70, and 140 kDa. Therefore, it is expected that agarases from Persicobacter sp. DH-3 could be used to produce functional neoagarooligosaccharides.

Isolation of a Pseudoalteromonas sp. JH-1 Producing Agarase and Characterization of its Agarase (Agarase를 생산하는 Pseudoalteromonas sp. JH-1의 분리·동정 및 agarase의 특성 연구)

  • Lee, Dong-Geun;Kim, Ju-Hui;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.496-501
    • /
    • 2021
  • In this study, the marine agar-degrading bacterium Pseudoalteromonas sp. JH-1 was isolated, and its growth and agarase properties were investigated. Seawater was collected from the offshore of the Yonggung Temple in Busan, and agar-degrading bacteria were isolated and cultured with marine agar medium. The bacterium Pseudoalteromonas sp. JH-1 was isolated through 16S rRNA gene sequencing. The extracellularly secreted enzyme was obtained from the culture broth of Pseudoalteromonas sp. JH-1 and was used to characterize its agarase. The extracellular agarase exhibited a maximum activity of 116.6 U/l at 50℃ and pH 6.0 of 20 mM Tris-HCl buffer. Relative activities were 31, 59, 94, 100, 45, and 31% at 20, 30, 40, 50, 60, and 70℃, respectively. Relative activities were 49, 85, 100, 86, 81, and 67% at pH 4, 5, 6, 7, 8, and 9, respectively. Residual activity was more than 85% after exposure at 20, 30, and 40℃ for 2 hr, and more than 82% after exposure at 50℃ for 2 hr. Zymogram analysis confirmed that Pseudoalteromonas sp. JH-1 produced at least two agarases of 55 and 97 kDa. As the products of α-agarase and β-agarase have antioxidation, antitumor, skin-whitening, macrophage activation, and prebiotic effects, further studies are needed on the agarase of Pseudoalteromonas sp. JH-1.