DOI QR코드

DOI QR Code

Seasonal Monitoring of Residual Veterinary Antibiotics in Agricultural Soil, Surface Water and Sediment Adjacent to a Poultry Manure Composting Facility

계분 퇴비화 시설 인근 농경지 토양, 지표수 및 저질토의 계절별 잔류 항생물질 모니터링

  • Lee, Sang-Soo (Department of Biological Environment, Kangwon National University) ;
  • Kim, Sung-Chul (Department of Biological Environment, Kangwon National University) ;
  • Kim, Kwon-Rae (National Academy of Agricultural Science) ;
  • Kwon, Oh-Kyung (National Academy of Agricultural Science) ;
  • Yang, Jae-E. (Department of Biological Environment, Kangwon National University) ;
  • Ok, Yong-Sik (Department of Biological Environment, Kangwon National University)
  • 이상수 (강원대학교 바이오자원환경학과) ;
  • 김성철 (강원대학교 바이오자원환경학과) ;
  • 김권래 (국립농업과학원) ;
  • 권오경 (국립농업과학원) ;
  • 양재의 (강원대학교 바이오자원환경학과) ;
  • 옥용식 (강원대학교 바이오자원환경학과)
  • Received : 2010.08.22
  • Accepted : 2010.09.17
  • Published : 2010.09.30

Abstract

Concentration of antibiotics including a tetracycline group (TCs) of tetracycline (TC), chlortetracycline (CTC), and oxytetracycline (OTC), a sulfonamide group (SAs) of sulfamethoxazole (SMX), sulfathiazole (STZ), and sulfamethazine (SMT), an ionophore group (IPs) of lasalocid (LSL), monensin (MNS), and salinomycin (SLM), and a macrolide group (MLs) of tylosin (TYL) was determined from samples collected from the agricultural soil, stream water, and sediment. For the agricultural soil samples, the concentration of TCs had the highest value among all tested antibiotic's groups due to its high accumulation rate on the surface soils. The lower concentrations of SAs in the agricultural soils may be resulted from its lower usage and lower distribution coefficient (Kd) compared to TCs. The concentration of TCs in stream water was significantly increased through June to September. It would be likely due to soil loss during an intensive rainfall event and a reduction of water level after the monsoon season. A significant amount of TCs in the sediment was also detected due to its accumulation from runoff, which occurred by complexation of divalent cations, ion exchange, and hydrogen bonding among humic acid molecules. To ensure environmental or human safety, continuous monitoring of antibiotics residues in surrounding ecosystems and systematic approach to the occurrence mechanism of antibiotic resistant bacteria are required.

본 연구는 강원도 원주 지역의 계분 퇴비화 시설 인근의 농경지 토양, 지표수 및 저질토에 대한 TCs계열 3종(TC, CTC 및 OTC), SAs 계열 3종(SMX, STZ 및 SMT), IPs 계열 3종(LSL, MNS 및 SLM) 및 MLs 계열 1종(TYL) 등 총 4개 계열 10종의 항생물질을 선정하여 영농시기 별 잔류특성을 조사하였다. 토양 시료의 경우 TCs가 다른 계열 항생물질과 비교하여 가장 높은 농도로 검출되었으며 이는 TCs 내 케톤기와 토양 내 2가 양이온이 복합체를 형성, 표토에 강하게 흡착되어 심토까지 이동하지 않고 축적된 것으로 추측된다. 반면 TCs와 비교해 토양 내 SAs 잔류량이 낮은 이유는 적은 사용량과 낮은 흡착계수에서 기인된 것으로 판단되었다. 수질시료의 TCs는 집중강우로 인한 토양유실 및 이후 유량 감소로 인해 6월보다 9월에 높은 농도를 보였다. 저질토 내 TCs 농도 증가 이유가 양이온간의 복합체 형성, 이온교환 및 부식산의 수소결합으로 인해 지표수로 유입된 TCs가 저질토로 흡착, 축적되었기 때문으로 판단된다. 본 연구를 통해 계분퇴비 시용시 주변환경으로 높은 농도의 항생물질이 유입될 가능성이 있으며, 이로 인해 토양 내 내성 박테리아 생성 및 생태계 교란뿐만 아니라 직 간접적으로 인간에게 피해가 우려되는 바 지속적인 모니터링을 통한 관리방안 마련이 필요할 것으로 판단된다.

Keywords

References

  1. Blackwell, P.A., Kay, P., Ashauer, R., Boxall, A.B.A., 2009. Effects of agricultural conditions on the leaching behaviour of veterinary antibiotics in soils, Chemosphere 75, 13-19.
  2. Boxall, A.B.A., Blackwell, P., Cavallo, R., Kay, P., Tolls, J., 2002. The sorption and transport of a sulphonamide antibiotic in soil systems, Toxicol. Lett. 131, 19-28. https://doi.org/10.1016/S0378-4274(02)00063-2
  3. Choi, K., Kim, Y., Park, J., Park, C.K., Kim, M., Kim, H.S., Kim, P., 2008. Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea, Sci. Total Environ. 405, 120-128. https://doi.org/10.1016/j.scitotenv.2008.06.038
  4. Christian, T., Schneider, R.J., Farber, H.A., Skutlarek, D., Meyer, M.T., Goldbach, H.E., 2003. Determination of antibiotic residues in manure, soil, and surface waters, Acta hydrochim. Hydrobiol. 31, 36-44. https://doi.org/10.1002/aheh.200390014
  5. Diaz-Cruz, M.S., Barcelo, D., 2006. Determination of antimicrobial residues and metabolites in the aquatic environment by liquid chromatography tandem mass spectrometry, Anal. Biochem. 386, 973-985.
  6. Ha, J.I., Hong, K.S., Song, S.U., Jung, S.C., Min, Y.S., Sin, H.C., Lee, K.O., Lim, K.J., Park, J.M., 2003. Survey of Antimicrobial Agents Used in Livestock and Fishes, Korean Soc. Vet. Public Health 27, 205-217.
  7. Hamscher, G., Sczesny, S., Hoper, H. Nau, H., 2002. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry, Anal. Chem. 74, 1509-1518. https://doi.org/10.1021/ac015588m
  8. Hu, D., Coats, J.R., 2007. Aerobic degradation and photolysis of tylosin in water and soil, Environ. Toxicol. Chem. 26, 884-889. https://doi.org/10.1897/06-197R.1
  9. Hu, D., Coats, J.R., 2009. Laboratory evaluation of mobility and sorption for the veterinary antibiotic, tylosin, in agricultural soils, J. Environ. Monit. 11, 1634-1638. https://doi.org/10.1039/b900973f
  10. Jorgensen, S.E., Halling-Sorensen, B., 2000. Drugs in the environment, Chemosphere 40, 691-699. https://doi.org/10.1016/S0045-6535(99)00438-5
  11. Karci, A.. Balcioglu, I.A., 2009. Investigation of the tetracycline, sulfonamide and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey, Sci. Total Environ. 407, 4652-4664. https://doi.org/10.1016/j.scitotenv.2009.04.047
  12. Kay, P., Blackwell, P.A. Boxall, A.B., 2005. Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land, Chemosphere 60, 497-507. https://doi.org/10.1016/j.chemosphere.2005.01.028
  13. Kim, K.R., Owens, G., Kwon, S.I., So, K.H., Lee, D.B., Ok, Y.S., 2010. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment, Water Air Soil Pollut. Published online: DOI: 10.1007/s11270-010-0412-2.
  14. Kim, S.C., Carlson, K., 2007. Quantification of human and veterinary antibiotics in water and sediment using SPE/LC/MS/MS, Anal. Bioanal. Chem. 387, 1301-1315. https://doi.org/10.1007/s00216-006-0613-0
  15. Kim, S.C., Yang, J.E., Ok, Y.S., Skousen, J., Kim, D.G., Joo, J.H., 2010. Accelerated metolachlor degradation in soil by zerovalent iron and compost amendments, Bull. Environ. Contam. Toxicol. 84, 459-464. https://doi.org/10.1007/s00128-010-9963-6
  16. Lee, H.Y., Lim, J.E., Kim, S.C., Kim, K.R., Kwon O.K., Yang, J.E., Ok, Y.S., 2009a. Transport of selected veterinary antibiotics (tetracyclines and sulfonamides) in a sandy loam soil: laboratory-scale soil column experiments, J. Korean Soc. Environ. Eng. 31, 941-948.
  17. Lee, H.Y., Lim, J.E., Kwon, O.K., Kim, S.C., Seo, Y.H., Yang, J.E., Ok, Y.S., 2009b. Removal of antibiotics in soil and water: a literature review, J. Agric. Life Sci. 20, 45-54.
  18. Lee, H.Y., Lim, J.E., Kim, S.C., Kim, K.R., Lee, S.S., Kwon, O.K., Yang, J.E., Ok, Y.S., 2010. Environmental monitoring of selected veterinary antibiotics in soils, sediments and water adjacent to a poultry manure composting facility in Gangwon Province, Korea, J. Korean Soc. Environ. Eng. 32, 278-286.
  19. Lim, J.E., Kim, S.C., Lee, H.Y., Kwon, O.K., Yang, J.E., Ok, Y.S., 2009. Occurrence and distribution of selected veterinary antibiotics in soils, sediments and water adjacent to a cattle manure composting facility in Korea, J. Korean Soc. Environ. Eng. 31, 681-688.
  20. Loftsson, T., Hreinsdottir, D., 2006. Determination of aqueous solubility by heating and equilibration: a technical note, AAPS Pharm. Sci. Tech. 7, E1-E4.
  21. Martinez-Carballo, E., Gonzalez-Barreiro, C., Scharf, S., Gans, O., 2007. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria, Environ. Pollut. 148, 570-579. https://doi.org/10.1016/j.envpol.2006.11.035
  22. Migliore, L., Cozzolino, S., Fiori, M., 2003. Phytotoxicity to and uptake of enrofloxacin in crop plants, Chemosphere 52, 1233-1244. https://doi.org/10.1016/S0045-6535(03)00272-8
  23. Ok, Y.S., Kim, S.C., Kim, K.R., Lee, S.S., Moon, D.H., Lim, K.J., Sung, J.K., Hur, S.O., Yang, J.E., 2010. Monitoring of selected veterinary antibiotics in environmental compartments near a composting facility in Gangwon Province, Korea, Environ. Monit. Assess. Published online: DOI 10.1007/s10661-010-1625-y.
  24. Pailler, J.Y., Krein, A., Pfister, L., Hoffmann, L., Guignard, C., 2009. Solid phase extraction coupled to liquid chromatography-tandem mass spectrometry analysis of sulfonamides, tetracyclines, analgesics and hormones in surface water and wastewater in Luxembourg, Sci. Total Environ. 407, 4736-4743. https://doi.org/10.1016/j.scitotenv.2009.04.042
  25. Pei, R., Kim, S.C., Carlson, K.H., Pruden, A., 2006. Effects of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG), Water Res. 40, 2427-2435. https://doi.org/10.1016/j.watres.2006.04.017
  26. Rabolle, M., Spliid, N.H., 2000. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil, Chemosphere 40, 715-722. https://doi.org/10.1016/S0045-6535(99)00442-7
  27. Seo, Y.H., Choi, J.K., Kim, S.K., Min, H.K., Jung, Y.S., 2007. Prioritizing environmental risks of veterinary antibiotics based on the use and the potential to reach environment, Korean J. Soil Sci. Fertilizer 40, 43-50.
  28. Son, H.J., Jung J.M., Hwang, Y.D., Roh, J.S., Yu, J.P., 2008. Effects of activated carbon types and service life on adsorption of tetracycline antibiotic compounds in GAC process, J. Korean Soc. Environ. Eng. 20, 925-932.
  29. Thiele-Bruhn, S., 2003. Pharmaceutical antibiotic compounds in soils: a review, J. Plant Nutr. 166, 145-167. https://doi.org/10.1002/jpln.200390023
  30. Tolls, J., 2001. Sorption of veterinary pharmaceuticals in soils: a review, Environ. Sci. Technol. 35, 3397-3406. https://doi.org/10.1021/es0003021

Cited by

  1. Estimating Predicted Environmental Concentration of Veterinary Antibiotics in Manure and Soil vol.48, pp.2, 2015, https://doi.org/10.7745/KJSSF.2015.48.2.100
  2. Treatment of Pharmaceutical Wastewaters by Hydrogen Peroxide and Zerovalent Iron vol.19, pp.1, 2014, https://doi.org/10.4491/eer.2014.19.1.009