• Title/Summary/Keyword: 박테리아 셀룰로오스

Search Result 24, Processing Time 0.034 seconds

Strength and Healing Performance of the Mortar using Bacterial Pellet as a Self-Healing Material (박테리아 펠렛을 자기치유 소재로 사용한 모르타르의 강도 및 치유성능)

  • Jang, Indong;Son, Dasom;Ryu, Young-ung;Park, Woojun;Yi, Chongku
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.112-119
    • /
    • 2020
  • In this study, cellulose-based bacterial pellets was used for the self-healing concrete manufacturing. The pellet is composed of complex cultured bacterial spore powder, methyl cellulose, two kinds of PVA nutrients and water, and is extruded through a hydraulic press to have a shape of 2mm in diameter to 3 to 4mm in length. Cellulose pellets expand at neutral pH, release bacteria and nutrients, and do not react in a basic environment, increasing the long-term survival rate of bacteria in cement mortar. In addition, pellet self-healing performance of pellet mortar was significantly higher than that of control mortar. Cellulose-based pellets are a new type of bacterial carrier system that will help develop self-healing concrete in the future by improving and optimizing pellets.

Bacterial Cellulose Membrane for Wastewater Treatment: A Review (폐수 처리를 위한 박테리아 셀룰로오스 막: 리뷰)

  • Jang, Eun Jo;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.384-392
    • /
    • 2021
  • Growing pollution due to industrialization leads to difficulties in survival of mankind. Generation of clean water from wastewater by membrane separation process is emerging cost efficient technology. Membrane prepared from renewable resources are in lots of demand to reduce burden on synthetic polymers which is one of the source of environmental pollution. Bacterial cellulose (BC) is very pure and distinct form of cellulose nanofibrils (CNF). Nanopapers prepared from CNF are used ad ultrafiltration (UF) and nanofiltration (NF) membrane for different applications. High crystallinity of BC gives rise to excellent mechanical property, an essential criterion for wastewater treatment membrane. In this review, BC based membrane for application in dye, oil, heavy metal and chemical removal from wastewater is discussed.

Development and Evaluation of the Biomimetic Actuator based on Bacterial Cellulose (박테리아 셀룰로오스 기반 생체모방 작동기 개발 및 평가)

  • Kim, Si-Seup;Kee, Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.302-306
    • /
    • 2012
  • Bacterial cellulose based actuator with large displacement was developed for biomimetic robots. Bacterial cellulose has 3D nanostructure with high porosity which was composed of the nanofibers. Freeze dried bacterial cellulose was dipped into ionic liquid solution such as 1-butyl-3-methylimidazolium(BMIMCl) to enhance the actuation performance due to increase the ionexchange capacity and ionic conductivity. And Poly(3,4-ethylenedioxythiophene)-poly (styrnenesulfonate)(PEDOT:PSS) was used for the electrodes of both side of bacterial cellulose actuator by dipping and drying method. The FT-IR and XRD were conducted to examine the electrochemical changes of developed bacterial cellulose actuator. The biomimetic caudal fin was designed using bacterial cellulose actuator and PDMS to verify the possibility for biomimetic robot. The step and harmonic response were conducted to evaluate the performance of developed biomimetic actuator.

Dyeing Properties of Bacterial Cellulose Fabric using Gardenia Jasminoides, Green Tea, and Pomegranate Peel, and the Effects of Protein Pretreatment (치자, 녹차, 석류껍질을 활용한 박테리아 셀룰로오스 섬유소재의 염색성과 단백질 전처리의 영향)

  • Yerim Hwang;Hyunjin Kim;Hye Rim Kim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.3
    • /
    • pp.511-527
    • /
    • 2024
  • The aim of this study was to impart color to bacterial cellulose (BC) fabric using various natural plant-based dyes-namely, gardenia jasminoides, green tea, and pomegranate peel. A protein pretreatment was also applied to improve the BC fabric's dyeability and mechanical properties. The BC fabric's dyeing and mordanting conditions when using plant-based natural dyes were determined by changes in the K/S values. The dyeability of BC samples dyed with green tea or pomegranate peel improved when they were pretreated with soy protein isolate (SPI) prior to dyeing. Moreover, the SPI pretreatment was efficient in improving the BC fabric's tensile strength and flexibility. This study proposes a method for dyeing BC fabric that uses plant-based natural dyes and confirms the effects of the protein pretreatment on the fabric's dyeability and durability.

Bending Performance of Bacterial Cellulose Actuator under Water (수중에서 박테리아 셀룰로오스 작동기의 굽힘 성능)

  • Jeon, Jin-Han;Park, Min-Woo;Kim, Seong-Jun;Kim, Jae-Hwan;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.203-204
    • /
    • 2008
  • Bacterial Cellulose Actuator with biocompatible and biodegradable properties was newly developed as an electro-active biopolymer under water. The performance of the BC actuator was improved through Li treatment. The mechanical and chemical properties of BC membranes were measured such as the tensile test, proton conductivity. The surface morphology of the bacterial cellulose was observed by using SEM. The electromechanical bending responses under both direct current and alternating current excitations were investigated. In voltage-current test,the power consumption under dynamic excitation increases with increasing voltage. Present results show that the bacterial cellulose actuator can be a promising smart material and may possibly have diverse applications under water.

  • PDF