• Title/Summary/Keyword: 박막 제조 공정

Search Result 679, Processing Time 0.027 seconds

Dye-sensitized Solar Cells Utilizing Core/Shell Structure Nanoparticle Fabrication and Deposition Process (코어/쉘 구조의 나노입자 제조 및 증착 공정을 활용한 염료감응 태양전지)

  • Jeong, Hongin;Yoo, Jhongryul;Park, Sungho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.111-117
    • /
    • 2019
  • This study proposed the fabrication and deposition of high purity crystalline $core-TiO_2/shell-Al_2O_3$ nanoparticles. Morphological properties of $core-TiO_2$ and coated $shell-Al_2O_3$ were confirmed by transmission electron microscope (TEM) and transmission electron microscope - energy dispersive spectroscopy (TEM-EDS). The electrical properties of the prepared $core-TiO_2/shell-Al_2O_3$ nanoparticles were evaluated by applying them to a working electrode of a Dye-Sensitized Solar Cell (DSSC). The particle size, growth rate and the main crystal structure of $core-TiO_2$ were analyzed through dynamic light scattering system (DLS), scanning electron microscope (SEM) and X-ray diffraction (XRD). The $core-TiO_2$, which has a particle size of 17.1 nm, a thin film thickness of $20.1{\mu}m$ and a main crystal structure of anatase, shows higher electrical efficiency than the conventional paste-based dye-sensitized solar cell (DSSC). In addition, the energy conversion efficiency (6.28%) of the dye-sensitized solar cell (DSSC) using the $core-TiO_2/shell-Al_2O_3$ nanoparticles selectively controlled to the working electrode is 26.1% higher than the energy conversion efficiency (4.99%) of the dye-sensitized solar cell (DSSC) using the conventional paste method.

The Characteristic Improvement of Photodiode by Schottky Contact (정류성 접합에 의한 광다이오드의 특성 개선)

  • Hur Chang-wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1448-1452
    • /
    • 2004
  • In this paper, a photodiode capable of obtaining a sufficient photo/ dark current ratio at both a forward bias state and a reverse bias state is proposed. The photodiode includes a glass substrate, an Cr thin film formed as a lower electrode over the glass substrate, Cr silicide thin film(∼l00$\AA$) ) formed as a schottky barrier over the Cr thin film, a hydrogenated amorphous silicon film formed as a photo conduction layer over a portion of the Cr silicide thin film. Transparent conduction film ITO (thickness 100nm) formed as an upper electrode over the hydro-generated amorphous silicon film is then deposited in pure argon at room temperature for the Schottky contact and light window. The high quality Cr silicide thin film using annealing of Cr and a-Si:H is formed and analyzed by experiment. We have obtained the film with a superior characteristics. The dark current of the ITO/a-Si:H Schottky at a reverse bias of -5V is ∼3$\times$IO-12 A/un2, and one of the lowest reported, hitherto. AES(Auger Electron Spectroscophy) measurements indicate that this notable improvement in device characteristics stems from reduced diffusion of oxygen, rather than indium, from the ITO into the a-Si:H layer, thus, preserving the integrity of the Schottky interface. The spectral response of the photodiode for wavelengths in the range from 400nm to 800nm shows the expected behavior whereby the photocurrent is governed by the absorption characteristics of a-Si:H.

Low-voltage Pentacene Field-Effect Transistors Based on P(S-r-BCB-r-MMA) Gate Dielectrics (P(S-r-BCB-r-MMA) 게이트 절연체를 이용한 저전압 구동용 펜타센 유기박막트랜지스터)

  • Koo, Song Hee;Russell, Thomas P.;Hawker, Craig J.;Ryu, Du Yeol;Lee, Hwa Sung;Cho, Jeong Ho
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.551-554
    • /
    • 2011
  • One of the key issues in the research of organic field-effect transistors (OFETs) is the low-voltage operation. To address this issue, we synthesized poly(styrene-r-benzocyclobutene-r-methyl methacrylate) (P(S-r-BCB-r-MMA)) as a thermally cross-linkable gate dielectrics. The P(S-r-BCB-r-MMA) showed high quality dielectric properties due to the negligible volume change during the cross-linking. The pentacene FETs based on the 34 nm-thick P(S-r-BCB-r-MMA) gate dielectrics operate below 5 V. The P(S-r-BCB-r-MMA) gate dielectrics yielded high device performance, i.e. a field-effect mobility of $0.25cm^2/Vs$, a threshold voltage of -2 V, an sub-threshold slope of 400 mV/decade, and an on/off current ratio of ${\sim}10^5$. The thermally cross-linkable P(S-r-BCB-r-MMA) will provide an attractive candidate for solution-processable gate dielectrics for low-voltage OFETs.

Application of Layer-by-Layer Assembly in Triboelectric Energy Harvesting (마찰대전 기반의 에너지 하베스팅에서 다층박막적층법의 응용)

  • Habtamu Gebeyehu, Menge;Yong Tae, Park
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.371-377
    • /
    • 2022
  • Triboelectric nanogenerator (TENG) devices have generated a lot of interest in recent decades. TENG technology, which is one of the technologies for harvesting mechanical energy among the energy wasted in the environment, is obtained by the dual effect of electrostatic induction and triboelectric charging. Recently, a multilayer thin film stacking method (or layer-by-layer (LbL) self-assembly technique) is being considered as a method to improve the performance of TENG and apply it to new fields. This LbL assembly technology can not only improve the performance of TENG and successfully overcome the thickness problem in applications, but also present an inexpensive, environmentally friendly process and be used for large-scale and mass production. In this review, recent studies in the accomplishment of LbL-based materials for TENG devices are reviewed, and the potential for energy harvesting devices reviewed so far is checked. The advantages of the TENG device fabricated by applying the LbL technology are discussed, and finally, the direction and perspective of this fabrication technology for the implementation of various ultra-thin TENGs are briefly presented.

The X-ray Detection and morphology Characteristics on Evaporation Temperature of amorphous Selenium based digital X-ray detector (비정질 셀레늄의 박막 제조공정에 따른 미세구조와 IV특성)

  • Gong, H.G.;Cha, B.Y.;Lee, G.H.;Kim, J.H.;Nam, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.51-54
    • /
    • 2002
  • Recently, due to its better photosensitivity in X-ray, the amorphous selenium based photoreceptor is used on digital direct method conversion material. Compared to other photoconductive material, amorphous selenium has good X-ray response characteristic and low leakage current. It has many parameters of detecting X-ray response on selenium. Among of them, it is well known that manufacture of a-Se is the most basic element. In this paper, we fabricated two types of amorphous selenium sample which had time variable. The one was fabricated continuous deposition sample and the other was step by step sample. Thickness of sample was $300{\mu}m$ and top electrode was evaporated gold. We investigated the leakage current and photo current of them and analysed their electrical characteristics. For analyzing morphology of samples, SEM and surface was pictured. We found that step by step deposition method could be applied for novel fabricating amorphous selenium film.

  • PDF

Microstructure and Characterization Depending on Process Parameter of SnO2 Thin Films Fabricated by PECVD Method (PECVD법에 의해 제조된 SnO2 박막의 공정변수에 따른 미세구조 및 특성)

  • Lee, Jeong-Hoon;Jang, Gun-Eik;Son, Sang-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.680-686
    • /
    • 2006
  • Tin oxide$(SnO_2)$ thin films were prepared on glass substrate by Plasma Enhanced Chemical Vapor Deposition (PECVD) method. $SnO_2$ thin films were prepared using gas mixture of dibutyltin diacetate as a precursor and oxygen as an oxidant at 275, 325, 375, $425^{\circ}C$, respectively as a function of deposition temperature. The XRD peaks corresponded to those of polycrystalline $SnO_2$, which is in the tetragonal system with a rutil-type structure. As the deposition temperature increased, the texture plane of $SnO_2$ changed from (200) plane to denser (211) and (110) planes. Lower deposition temperature and shorter deposition time led to decreasing surface roughness and electrical resistivity of the formed thin films at $325\sim425^{\circ}C$. The properties of $SnO_2$ films were critically affected by deposition temperature and time.

Preparation and Characterization of Cd-Free Buffer Layer for CIGS by Chemical Bath Deposition (화학습식공정을 이용한 CIGS 태양전지용 Cd-free 버퍼층 박막 제조 및 특성 분석)

  • Hwang, Dae-Kue;Jeon, Dong-Hwan;Sung, Shi-Joon;Kim, Dae-Hwan;Lee, Dong-Ha;Kang, Jin-Kyu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.146-148
    • /
    • 2012
  • In our study, we have focused on optimizing good quality of ZnS buffer layer by chemical bath deposition (CBD) from a bath containing $ZnSO_4$, Thiourea and Ammonia in aqueous solution onto CIGS solar cells. The influence of deposition parameter such as pH, deposition temperature, stirring speed played a very important role on transmission, homogeneity, crystalline of ZnS buffer layer. The transmission spectrum showed a good transmission characteristic above 80% invisible spectral region. CIGS thin flim solar cell with ZnS buffer layer has been realized with the efficiency of 14.2%.

  • PDF

Effect of Processing Variables on the Texture of Ni Substrate for YBCO Coated Conductor (YBCO 박막선재용 Ni 기판의 집합도에 미치는 제조공정 변수효과)

  • 지봉기;임준형;이동욱;주진호;나완수;김찬중;홍계원
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.938-945
    • /
    • 2003
  • We fabricated Ni-substrate for YBCO coated conductors and evaluated the effects of pressing and annealing temperature and time on texture. Ni substrate was fabricated by powder metallurgy technique and compacts were prepared by applying uniaxial or isostatic pressure. The texture of substrate made by applying cold isostatic pressure (CIP) was stronger than that by uniaxial pressure which we attribute to the fact that the CIP method provided higher density and more uniform density distribution. It was observed that the substrate annealed at 400 C showed both retained texture and recrystallized texture. On the other hand, the texture of substrate significantly improved at annealing temperature above 500 C, forming strong 4-fold symmetry, [111] II ND texture, and FWHM of 9∼10 . It is to be noted that the degree of texture was almost independent of annealing temperature (500∼1000 C) and annealing time(1∼54 min, at 1000 C). EBSD and AFM analysis indicated that 99% of grain boundaries was low angle grain boundary and RMS was approximately 3 nm, respectively. Development of strong cube texture and high fraction of low angle grain boundary of Ni-substrate made by powder metallurgy technique in our study is considered to be suitable for the application of YBCO coated conductors.

Mechanical Properties of TiAlSiN films Coated by Hybrid Process (하이브리드 공정으로 제조한 TiAlSiN 박막의 특성)

  • Song, Min-A;Yang, Ji-Hoon;Jung, Jae-Hun;Kim, Sung-Hwan;Jeong, Jae-In
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.174-180
    • /
    • 2014
  • In this study, TiAlSiN coatings have been successfully synthesized on stainless steel and tungsten carbide substrate by a hybrid coating method employing a cathodic arc and a magnetron sputtering source. TiAl and Si target were vaporized with the cathodic arc source and the magnetron sputtering source, respectively. Process gas was the mixture of nitrogen and argon gas. With the increase of Si content, the crystallinity and the grain size of TiAlSiN film was decreased. At the Si content of more than 8 at.%, grain size of TiAlSiN was saturated at around 2 nm. The hardness value of the TiAlSiN film increased with incorporation of Si, and had the maximum value of ~ 3,233 Hv at the Si content of 9.2 at.%. The oxidation resistance of TiAlSiN film was enhanced with the increase of Si content.

Preparation and Characterization of $Bi_{4-x}Sm_xTi_3O_{12}(0<\leqx\geq2)$ Thin Films Using Sol-Gel Processing (졸겔공정을 이용한 $Bi_{4-x}Sm_xTi_3O_{12}(0<\leqx\geq2)$ 박막제조 및 특성평가)

  • 이창민;고태경
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.897-907
    • /
    • 1997
  • Thin films of Bi4-xSmxTi3O12(0$\leq$x$\leq$2) were prepared on Pt/Ti/SiO2/Si(100) at $700^{\circ}C$ using spin-coating with sols derived from Bi-Sm-Ti complex alkoxides. From X-ray diffraction analysis, it was observed that Sm-substituted phases resembled ferroelectric Bi4Ti3O12 in structure. Variations of their lattice parameters depending on the amount of Sm-substitution showed that an anomalous structural distortion might exist at x=1. The grain sizes of the thin films decreased from 0.115 ${\mu}{\textrm}{m}$ to 0.078${\mu}{\textrm}{m}$ with increasing the amount of Sm-substitution. The dielectric constants and the remanent polarizations of the thin films decreased with increasing the amount of the Sm-substitution, which were related to decrease of the stereo-active Bi3+ ion contributing to polarization. However, these values were exceptionally high at x=1, compared to those of the other substituted phases. Such an anomaly suggests that the phase of x=1 has 1:1 chemical ordering between Sm and Bi in structure. The thin films of all compositions except x=2 showed ferroelectricity. The thin film of x=2 was paraelectric, whose grains were too fine to exhibit ferroelectricity.

  • PDF