• Title/Summary/Keyword: 바텀애시 경량골재

Search Result 23, Processing Time 0.028 seconds

Properties of Mortar Using Lightweight Fine Aggregate Made by Bottom Ash Discharged Air Cooling Process according to Grading (건식공정 바텀애시 경량 잔골재의 입도 조건에 따른 모르타르의 특성)

  • Choi, Hong-Beom;Sun, Joung-Soo;Yu, Jae-Seong;Li, Mao;Choi, Duck-Jin;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.53-54
    • /
    • 2014
  • This study evaluates engineering properties of mortar using lightweight fine aggregate made by bottom ash discharged air cooling process according to grading. Then we confirm possibility of use as lightweight fine aggregate. Consequently, Mix using bottom ash need additional examination for a change with the passage of time of flow. Also, mix of S indicates similar compressive strength with mix of Plain and 16% decrease of unit weight compared to mix of Plain; while mix of B indicates 10% decrease of compressive strength and 16% decrease of unit weight. Therefore, this study shows that mix of S and B is superior compared with other mix.

  • PDF

The effect of Foam Volume Ratio on the Shear Friction Behavior of Bottom Ash Based Lightweight Aggregate Concrete (바텀애시 골재 기반 경량 콘크리트의 전단마찰거동에 대한 기포 혼입률의 영향)

  • Kim, Jong-Won;Yang, Keun-Hyeok;Mun, Ju-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.183-184
    • /
    • 2020
  • This study evaluated the effect of foam volume ratio on shear friction behavior of bottom ash based lightweight aggregate concrete (LWA_BA). The LWA_BA with different foam volume ratio ranged between 8 and 25 MPa for compressive strength(fck), 17.3~62.5 kN for shear capacity at first shear crack(Vcr), 31.1~73.8 kN for shear friction capacity(Vn), and 0.01~0.03 mm for slip at maximum peak load(S0). fck decreased with increase in the foam volume ratio, showing that this trend was also observed in Vcr, Vn, and S0.

  • PDF

An Academic Assessment of Lightweight Concrete Properties for Rhamen-type Modular Building Walls (라멘식 모듈러 건축물 벽체 적용을 위한 경량 콘크리트의 공학적 특성)

  • Jung, Ui-In;Lee, Min-Jae;Ju, Young-Gil;Kim, Bong-Joo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.527-536
    • /
    • 2023
  • This research embarked on a comprehensive examination of the engineering characteristics of lightweight concrete intended for implementation in rhamen-type modular building walls. The concrete was formulated utilizing bottom ash and coated EPS beads, in accordance with the Korea Construction Standards Center(KCS) 14 20 20 "Lightweight Aggregate Concrete". Our findings articulate that while EPS beads tend to diminish the compressive strength of the lightweight concrete, they concurrently contribute to a notable reduction in unit mass. The porous nature of the bottom ash endows the material with diminished thermal conductivity. Significantly, a mixture containing 50% EPS beads and 50% BA20 aggregates, replacing half of the coarse aggregates, was found to meet the standard specifications.

An Experimental Study on Thermal Property of Porous Concrete Containing Bottom Ash (바텀애시를 활용하는 다공성 콘크리트의 열전도 특성에 관한 실험 연구)

  • Jeong, Seung-Tae;Kim, Bum-Soo;Park, Ji-Hun;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.625-632
    • /
    • 2021
  • In this paper, the applicability of bottom ash to insulation concrete was investigated to increase the utilization of bottom ash. Bottom ash was used as the aggregates in porous concrete and extensive experiments were conducted to investigate the characteristics of porous concrete using two types of bottom ash aggregates. The water-binder ratios of 0.25 and 0.35 were chosen and concrete specimens was produced with the compaction of 0.5, 1.5, and 3.0MPa to analyze the material properties at different compaction conditions. After concrete specimens were cured for 28 days at water tanks, unit weight, total void ratio, and thermal conductivity were measured. Based on the measured experimental results, the relationships between the unit weight, total void ratio, and thermal conductivity of porous concrete containing bottom ash was presented.

Evaluation of Reproducibility for Mechanical Properties of Lightweight Concrete using Bottom Ash Aggregates and Foam (바텀애시 골재와 기포를 이용한 경량 콘크리트의 역학적 특성에 대한 재현성 평가)

  • Ji, Gu-Bae;Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.202-209
    • /
    • 2019
  • The objective of this study is to examine the reproducibility for compressive strength development and mechanical properties of lightweight concrete made using bottom ash aggregates and foam(LWC-BF). Based on the mix proportions conducted by Ji et al., six identical mixes were prepared with different actual foam volume ratios from 0% to 25% and water-to-binder ratios from 25% to 30%. The presently measured properties, including initial slump, slurry density, compressive strength gains at different ages, splitting tensile strength, and modulus of rupture, were very close to those determined in the previous tests by Ji et al. Thus, the developed LWC-BF has a good potential in obtaining a reproducibility for compressive strength development and mechanical properties even though the troubles of mixing control owing to the addition of preformed foam.

Stress-Strain Model in Compression for Lightweight Concrete using Bottom Ash Aggregates and Air Foam (바텀애시 골재와 기포를 융합한 경량 콘크리트의 압축 응력-변형률 모델)

  • Lee, Kwang-Il;Mun, Ju-Hyun;Yang, Keun-Hyeok;Ji, Gu-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.216-223
    • /
    • 2019
  • The objective of this study is to propose a reliable stress-strain model in compression for lightweight concrete using bottom ash aggregates and air foam(LWC-BF). The slopes of the ascending and descending branches in the fundamental equation form generalized by Yang et al. were determined from the regression analyses of different data sets(including the modulus of elasticity and strains at the peak stress and 50% peak stress at the post-peak performance) obtained from 9 LWC-BF mixtures. The proposed model exhibits a good agreement with test results, revealing that the initial slope decreases whereas the decreasing rate in the stress at the descending branch increases with the increase in foam content. The mean and standard deviation of the normalized root-square mean errors calculated from the comparisons of experimental and predicted stress-strain curves are 0.19 and 0.08, respectively, for the proposed model, which indicates significant lower values when compared with those(1.23 and 0.47, respectively) calculated using fib 2010 model.

Properties of Fresh Concrete with Dry Bottom Ash Processed by Various Method (다양한 방법으로 가공한 건식공정 바텀애시를 사용한 콘크리트의 굳지 않은 상태에서의 특성)

  • Sun, Joung-Soo;Choi, Hong-Beom;Lee, Myeong-Jin;Yu, Jae-Seong;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.92-93
    • /
    • 2014
  • This study was carried out to process the shape of dry bottom ash using the impact crusher and gravity crusher, which are identified as most effective in improving grain shape through the preceding research, and a comparison was made between concrete that utilized the processed dry bottom ash as aggregate and concrete containing dry bottom ash before processing to understand properties of the new concrete.

  • PDF

The Study on the Basic Properties of Concrete Containing the Domestic Artificial Lightweight Aggregate (국내산 인공경량골재를 이용한 콘크리트의 기초 특성 연구)

  • Kwon, Hae-Won;Seo, Hui-Wan;Lee, Ji-Hwan;Jun, Woo-Chul;Lee, Jae-Sam
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.32-33
    • /
    • 2013
  • This study was a result of laboratory test to confirm the porperties of concrete containing the domestic artificial lightweight aggregate. The domestic artificial lightweight aggregate is made with bottom ash which waste material in the thermal power plant. In the experimental result air contents of fresh concrete was measured lower than other artificial lightweight aggregate. This air contents is important for retaining the resistance of freezing and thawing. Therefore air contents of concrete will be considered for retaining the resistance of freezing and thawing when manufacture the concrete containing the domestic artificial aggregate.

  • PDF

Behavior of Soft Ground Throughout Mock-up Test Using Low Self Weight Banking Method (경량성토 모형시험을 통한 연약지반상의 성토제체의 거동)

  • Kim, Sang Chel
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.85-91
    • /
    • 2011
  • This study aims at evaluating feasibility of Bottom ash-mixed Foam Cement Banking(BFCB) Method on the enhancement of soft soil, which is developed to reduce self-weight of banking by applying bottom ash and foam. to cement slurry. In order to measure the behavior of soil when BFCB layer was covered to soft ground, a testing equipment for mock-up test was fabricated and phased loads were applied up to measurement of yielding and ultimate strengths as well as movement of ground particles. In addition, these measured values such as settlement and heaving were compared with ones of surface-hardening method prevailing on soil improvement. As the result through mock-up test, BFCB showed lower values of ground deformation, while wider range of deformation was observed in compare to the other method. And settlement and heaving were measured lower, which implies the method developed is very effective to applicability of soft ground.

Proposal for Compressive Strength Development Model of Lightweight Aggregate Concrete Using Expanded Bottom Ash and Dredged Soil Granules (바텀애시 및 준설토 기반 인공경량골재 콘크리트의 압축강도 발현 모델 제시)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.7
    • /
    • pp.19-26
    • /
    • 2018
  • This study tested 25 lightweight aggregate concrete (LWAC) mixtures using the expanded bottom ash and dredged soil granules to examine the compressive strength gain of such concrete with different ages. The test parameters investigated were water-to-cement ratios and the natural sand content for the replacement of lightweight fine aggregate. The compressive strength gain rate in the basic equation specified in fib model code was experimentally determined in each mixture and then empirically formulated as a function of the water-to-cement ratio and oven-dried density of concrete. When compared with 28-day compressive strength, the tested LWAC mixtures exhibited relatively low gain ratios (0.49~0.82) at an age of 3 days whereas the gain ratios (1.16~1.41) at 91 days were higher than that (1.05~1.15) of the conventional normal-weight concrete. Thus, the fib model equations tend to overestimate the early strength gain of LWAC but underestimate the long-term strength gain. The proposed equations are in good agreement with the measured compressive strength development of LWAC at different ages, indicating that the mean and standard deviation of the normalized root mean square errors determined in each mixture are 0.101 and 0.053, respectively.