• Title/Summary/Keyword: 바이패스 더스트

Search Result 6, Processing Time 0.019 seconds

Study of Using Carbon Dioxide for Obtaining Potassium Chloride from Cement By-Pass Dust (시멘트 바이패스 더스트 내 염화칼륨 수득을 위한 이산화탄소 적용 연구)

  • Kim, Kyoungseok;Chu, Yongsik
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.38-44
    • /
    • 2017
  • As by-pass dust (BPD) made from cement manufactured process is designated waste, it is required to bury as high cost. The main component of BPD is potassium chloride (KCl), and used for the fertilizer. For using KCl to the fertilizer, the pH value of KCl is required as neutral or weak acid. However, it is not suitable to apply BPD into the fertilizer directly without any other treatment because BPD's pH value is shown 12.0~12.5; a high base. In this study, the carbon dioxide ($CO_2$) was used for removing calcium oxide (CaO) and reducing pH value during manufacturing process of KCl. We fixed inner condition of the carbon test chamber as $25^{\circ}C$-50RH%, and retained 0~7 hours under the 20 vol% of $CO_2$ atmosphere. After experiment, we analyzed the content of CaO and pH value from each samples. The more time exposed to $CO_2$, the content of CaO and pH value are shown. Furthermore, pH value exposed in 6 hours nearly reached 7.

Preparation of KCl through Removal of Heavy Metals from Chlorine By-Pass Dust (염소 바이패스 더스트를 이용한 염화칼륨 제조 및 중금속 제거)

  • Yun, Youngmin;Yeom, Nari;Lee, Kabsoo;Eom, Seonhui;Lee, Yonghyun;Chu, Yongsik
    • Resources Recycling
    • /
    • v.26 no.2
    • /
    • pp.11-17
    • /
    • 2017
  • Many problems are occurred by using industrial by-product and municipal solid waste in the cement manufacturing process. The main components of chlorine by-pass dust generated by the use of the wastes are $K^+$, $Cl^-$, and a slight amount of heavy metals is also contained. In terms of waste recycling, it is necessary to eliminate the heavy metals. Therefore, in this study, the experiments for the removal of heavy metals from KCl which was produced by chlorine by-pass dust were conducted. In order to find optimum conditions for the removal of heavy metals, we have controlled the amount of water and precipitator. The type and concentration of heavy metals in KCl were analyzed. The concentration of heavy metals decreased as amount of precipitator increased. The heavy metals such as Pb, Cd, and As were not detected in dust A and B, when the mixing ratios between dust A(B) and water were controlled to be 1:2 (1:2, 1:3.5) with the addition of 3% precipitator (NaOCl).

Solubility and Yield Characteristics of KCl in Cement By-Pass Dust (시멘트 바이패스 더스트에 존재하는 염화칼륨의 용해 및 수득 특성)

  • Yun, Youngmin;Jeong, Jaehyun;Chu, Yongsik
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.43-48
    • /
    • 2016
  • Cement manufacturing plant uses various kinds of industrial/municipal waste. The waste contains considerable amount of potassium, chlorine and small amount of heavy metal. Many researches were performed to fabricate valuable resources from the waste. In this study, various methods, which dissolves and crystallizes potassium/chlorine to extract potassium chloride, were experimented. Especially amount of water, slurry temperature, and stirring time were controlled. Then kind of heavy metal and content of potassium chloride were analyzed. The yield of potassium chloride increased, as the amount of water for slurry increased but it increased slightly, when the water content was over 200%. The yield tended to increase, when the temperature of slurry was over a certain point. The yield did not increase in case of over 10 minutes stirring time. The kind and content of heavy metal in potassium chloride were various according to stirring time. The main heavy metals were Pb, Cu, and $Cr^{6+}$.

Strength Characteristics of Solidified Soil with Hardening Agents made of Industrial By-Products (산업부산물을 이용한 지반고화제 혼합토의 강도특성)

  • Kim, Youngsang;Yu, Geunmo;Mun, Kyoungju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.19-26
    • /
    • 2012
  • In this study, geotechnical tests including unconfined compression test were carried out to evaluate the ground improvement effect of the hardening agent, which has been developed by using inter-chemical reactions between slag, fly ash, phosphogypsum and bypass dust on the weathered granite soil and dredged marine clay. Test results show that the strength of weathered granite soil mixed with hardening agent B-2, which uses phosphogypsum as an activator, is higher than that of B-1, which uses bypass dust as an activator. Strengths of B-1 & B-2 hardening agent mixed soil show only 44%~60% of strength of OPC(Ordinary Portland Cement, OPC) mixed soil. However, since B-1 and B-2 agents are made of industrial by-products, they seem economically more effective than ordinary portland cement as well as other present hardening agents. Test results on dredged marine clay show that unconfined compression strength increases with amount of agent and curing days. Unconfined compression strength of 14% B-1 agent mixed soil increases linearly with curing days and reaches only 40% of OPC mixed soil. While unconfined compression strength of 14% B-2 agent mixed soil increases exponentially and reaches 133% of OPC mixed soil. Relationship between deformation modulus and unconfined compression strength of B-1 and B-2 mixed soil can be expressed as $E_{50}=(20{\sim}47)_{qu,28}$, which is similar with lower limit of OPC mixed dredged marine clay.

Flow and Compressive Strength Properties of Low-Cement Soil Concrete (저시멘트 소일콘크리트의 유동성 및 압축강도 특성)

  • Park, Jong-Beom;Yang, Keun-Hyeok;Hwang, Chul-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • This study examined the effect of binder-to-soil ratio(B/S) and water-to-binder ratio(W/B) on the flow and compressive strength development of soil concrete using high-volume supplementary cementitious materials. As a partial replacement of ordinary portland cement, 10% by-pass dust, 40% ground granulated blast-furnace slag, and 25% circulating fluidized bed combustion fly ash were determined in the preliminary tests. Using the low-cement binder incorporated with clay soil or sandy soil, a total of 18 soil concrete mixtures was prepared. The flow of the soil concrete tended to increase with the increase in W/B and B/S, regardless of the type of soils. The compressive strength was commonly higher in sandy soil concrete than in clay soil concrete with the same mixture condition. Considering the high-workability and compressive strength development, it could be recommended for low-cement soil concrete to be mixed under the following condition: B/S of 0.35 and W/B of 175%.

A Study on Synthesis of Potassium Sulfate used Sodium Sulfate and Potassium Chloride (황산나트륨과 염화칼륨을 사용한 황산칼륨 제조 연구)

  • Kim, Nam-Il;Kim, Tae-Yeon;Chu, Yong-Sik
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.35-43
    • /
    • 2021
  • In this study, Na2SO4 and KCl reagents were used to synthesize K2SO4 as a basic study for recycling byproducts generated during the manufacture of steel and cement. The mole ratio of Na2SO4 to KCl, the saturation of the solution, and the stirring temperature were controlled to derive the optimal manufacturing conditions. The microstructure and crystallinity of the materials prepared were evaluated using scanning electron microscopy and X-ray diffraction analysis. Pure K2SO4 was obtained when the mole ratio of Na2SO4 to KCl was 1:6-18, the saturation of the solution was less than 160%, and the stirring temperature was 20℃, 50℃. The optimal manufacturing conditions to maximize the crystallinity and yield of K2SO4 while minimizing the energy consumption were 1:6 mole ratio of Na2SO4 to KCl, 140% saturation of the solution, and 20℃ stirring temperature.