DOI QR코드

DOI QR Code

A Study on Synthesis of Potassium Sulfate used Sodium Sulfate and Potassium Chloride

황산나트륨과 염화칼륨을 사용한 황산칼륨 제조 연구

  • Kim, Nam-Il (Energy & Environmental Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Kim, Tae-Yeon (Energy & Environmental Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Chu, Yong-Sik (Energy & Environmental Division, Korea Institute of Ceramic Eng. & Tech.)
  • 김남일 (한국세라믹기술원 에너지환경본부) ;
  • 김태연 (한국세라믹기술원 에너지환경본부) ;
  • 추용식 (한국세라믹기술원 에너지환경본부)
  • Received : 2020.08.04
  • Accepted : 2020.12.31
  • Published : 2021.02.28

Abstract

In this study, Na2SO4 and KCl reagents were used to synthesize K2SO4 as a basic study for recycling byproducts generated during the manufacture of steel and cement. The mole ratio of Na2SO4 to KCl, the saturation of the solution, and the stirring temperature were controlled to derive the optimal manufacturing conditions. The microstructure and crystallinity of the materials prepared were evaluated using scanning electron microscopy and X-ray diffraction analysis. Pure K2SO4 was obtained when the mole ratio of Na2SO4 to KCl was 1:6-18, the saturation of the solution was less than 160%, and the stirring temperature was 20℃, 50℃. The optimal manufacturing conditions to maximize the crystallinity and yield of K2SO4 while minimizing the energy consumption were 1:6 mole ratio of Na2SO4 to KCl, 140% saturation of the solution, and 20℃ stirring temperature.

본 연구에서는 제철 및 시멘트 제조공정에서 발생하는 부산물을 재활용하기 위한 기초 연구로 시약급 Na2SO4와 KCl을 사용하여 K2SO4를 제조하였다. K2SO4 제조 시 최적조건을 도출하기 위해 Na2SO4와 KCl의 몰 비율, 용액의 포화도 및 교반 온도를 제어하였으며, 주사전자현미경, X-선 회절분석기 등을 사용하여 수득시료의 미세구조 관찰 및 결정성을 분석·평가하였다. 순수 K2SO4를 수득할 수 있는 구간은 Na2SO4와 KCl의 몰 비율 1:6-18, 용액의 포화도 160% 이하, 교반 온도 20℃, 50℃이었다. 또한 K2SO4의 높은 결정성 확보 및 최종 수득량 증대, 에너지 소모 최소화를 고려한 최적 조건은 Na2SO4와 KCl의 몰 비율 1:6, 용액의 포화도 140%, 교반 온도 20℃이었다.

Keywords

References

  1. Korea waste association, Waste statistics, http://www.kwaste.or.kr/bbs/content.php?co_id=sub0401, June 11, 2020.
  2. Kyeong-Seok Kim, Yong-Sik Chu, 2017 : Study of using carbon dioxide for obtaining potassium chloride from cement by-pass dust, Journal of the korean institute of resources recycling, 26(6), pp.38-44. https://doi.org/10.7844/KIRR.2017.26.6.38
  3. Dae Myung Chemical, product information, http://www.daemyungchem.co.kr/shop/goods/goods_view.php?goodsno=287&category=002, June 16, 2020.
  4. Yong-Sik Chu, Jae-Wan Park, Jae-Hyun Jeong, 2015 : KR. 101505518B1.
  5. Bong-Chan Ban, 2009 : KR. 20090054859A.
  6. Yong-Sik Chu, Jae-Hyun Jeong, 2017 : KR. 20170031014A.
  7. United Nations Industrial Development Oragnization, International Fertilizer Development Center, 1998 : Fertilizer manual, 3rd Edition, Kluwer Academic, Dordrecht.
  8. American Surface Prep, Products, https://web.archive.org/web/20141209115526/https://www.americansurfaceprep.com/products/, December 7, 2020.
  9. B. U. Grzmil and B. Kic, 2005 : Single-Stage Process for Manufacturing of Potassium Sulphate from Sodium Sulphate, Chemical Papers-Slovak Academy of Sciences, 59(6b), pp.476-480.
  10. Heinz Dr Scherzberg, Reiner Dipl Ing Schmitz, 1994 : DE. 4340839C1.
  11. William M. Vettera, Hirono Totsukaa, M. Dudleya, et al. 2002 : The perfection and defect structure of organic hourglass inclusion K2SO4 crystals, Journal of Crystal Growth, 241(4), pp.498-506. https://doi.org/10.1016/S0022-0248(02)01325-8
  12. Periodic table of elements, Solubility Table, https://periodictable-of-elements.org/SOLUBILITY, September 13, 2020.