• 제목/요약/키워드: 바이오 가스

검색결과 1,064건 처리시간 0.032초

바이오 매스 급속 열분해 가스의 응축 모델링 기법에 관한 연구 (A Study on the Condensation Modeling Method for Fast Pyrolysis Gas of Biomass)

  • 박훈채;최항석;최연석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.107.1-107.1
    • /
    • 2011
  • 최근 석유, 가스, 석탄을 비롯한 화석연료의 다량 사용으로 기후변화, 대기오염 등의 환경문제 및 자원 고갈의 우려 때문에 바이오매스는 중요한 화석연료 대체 에너지 자원으로써 큰 관심을 받고 있다. 바이오매스 자원을 에너지로 전환하는 방법 중 하나인 급속 열분해 공정은 산소가 없는 상태에서 바이오매스를 열적으로 분해하여 액상 상태의 생성물을 회수하는 공정으로, 증기상의 열분해 가스를 응축하여 회수하게 된다. 바이오매스의 급속 열분해에 관한 연구는 주로 바이오매스의 종류와 열분해 조건에 따라 회수되는 바이오 원유의 수율 및 물리 화학적 특성에 관한 연구가 수행되고 있으나, 열분해 가스의 응축에 관한 연구는 응축에 수반되는 복잡한 물리적 현상 때문에 미진하다. 따라서 본 연구에서는 바이오매스의 급속 열분해를 통해 생성되는 증기상의 열분해 가스의 응축 현상을 모사 할 수 있는 모델링 기법에 대해 연구하였다. 급속 열분해 공정을 통해 생성되는 바이오 원유는 수백개의 화합물로 구성되어 있으며, 동일한 바이오매스를 사용한 경우라도 공정조건에 따라 바이오 원유에 포함된 화합물은 달라진다. 따라서 본 연구에서는 바이오 원유의 주요 화합물인 water, propanal, butanal, pentanal, phenol, guaiacol, coniferyl alcohol, formic acid, acetic acid, propanoic acid, butanoid acid를 대상으로 열분해 가스의 응축을 모사하였다. 본 연구에서는 응축 모델링 기법의 검증을 위해 실험결과와 비교하여 정확성을 검증하였으며, 본 연구의 결과를 활용하여 응축 조건 변화에 따른 급속 열분해 가스의 응축률을 예측하고, 이를 이용한 응축 열교환기 설계에 유용하게 사용될 수 있을 것으로 판단된다.

  • PDF

유동층 반응기에서 목질계 바이오매스의 가스화반응 (Gasification of woody biomass in a fluidized bed reactor)

  • 김승수;김진수;서영훈;조원준;백영순;송택용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.102.1-102.1
    • /
    • 2010
  • 바이오매스(Biomass)는 지구상에서 에너지원으로 이용될 수 있는 모든 식물과 미생물을 총칭하는 의미로 사용된다. 최근 바이오매스를 에너지자원화 시키는 방법으로 주목받는 열화학적 전환(Thermo-chemical conversion) 반응은 산소가 없이 혹은 희박한 조건에서 바이오매스에 열과 압력을 가하거나 공기나 수증기 등의 가스화제와 반응하여 바이오오일(Bio-oil) 및 합성가스(Syngas)로 변화하는 프로세스를 의미한다. 바이오매스로부터 바이오 DME(Di-Methyl Ether) 생산을 위한 합성가스를 제조하기 위해서 국내 산림자원을 대상으로 열분해반응 특성연구를 수행하였다. 또한 이들 물질로부터 바이오 DME 합성을 위해 최적의 합성가스 제조를 위한 타당성 연구를 수행하였다. 반응온도 $800{\sim}900^{\circ}C$에서 가스화 수율은 78~80%, 촤 수율은 17~20%, 타르 수율은 4~10%였고, 합성가스($H_2$/CO)비는 0.9~1.6였다.

  • PDF

유기성페자원 바이오가스 활용방안 및 운영 사례

  • 이준상
    • 환경정보
    • /
    • 통권419호
    • /
    • pp.20-24
    • /
    • 2015
  • 바이오가스는 지구 온난화의 원인인 화석연료를 대체할 수 있는 신재생에너지로 다방면에서 사용될 수 있다. 바이오가스 플랜트가 널리 보급된 유럽에서는 자동차연료, 도시가스, 연료전지, 스팀생산 및 발전등에 이용되고 있다. 우리나라에서도 바이오가스를 활용하기 위한 다양한 방법이 개발되어 시도되고 있으며 주로 발전에 국한되어 활용되던 것이 현재에는 도시가스, 자동차연료, 연료전지, 스팀생산 등에도 이용되고 있다.

  • PDF

5MW 바이오가스 터빈의 바이오가스와 도시가스 혼합용 정적 혼합기의 성능에 관한 수치해석 및 실증 연구 (Numerical Analysis and Demonstration Test on the Performance of a Static Mixer for mixing Biogas and Town Gas for the 5MW Biogas Turbine)

  • 차효석;송순호;박종연;김영일;문성영
    • 에너지공학
    • /
    • 제24권1호
    • /
    • pp.51-57
    • /
    • 2015
  • 본 연구에서는 바이오가스의 공급이 부족한 환경에서 5MW급 바이오 가스터빈을 운전하기 위한 바이오가스와 도시가스의 혼합용 혼합챔버의 성능에 대한 수치해석 및 실증 시험을 수행한 것이다. 혼합챔버의 성능에 대한 수치해석으로 혼합챔버 출구부분에서의 불균일도와 압력강하를 계산하였다. 그 결과, 불균일도는 최소 0.05%에서 최대 0.16%로 이는 99%이상 바이오가스와 도시가스가 혼합되는 것을 의미한다. 압력강하는 입구압력 5bar대비 최소 0.07%에서 0.17%로 0.2%미만으로 나타났다. 이를 통해 현장에서 실증 시험을 수행한 결과 외기온도 $15^{\circ}C$조건에서 바이오가스를 $20.0Nm^3/min$, 도시가스를 $12.0Nm^3/min$ 공급할 경우 5MW급 바이오 가스터빈의 정상적인 운전이 가능함을 확인하였다.

축산바이오가스발전시스템 가동 시 발생되는 연소 배기가스 중 $SO_2$에 관한 연구 (Study of the $SO_2$ combustion gases occurring from a livestock waste biogas power system)

  • 최재준;정대헌;박병식;박진성;허창수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.173.2-173.2
    • /
    • 2011
  • 대체 에너지 자원 중 폐기물의 소화 가스를 이용한 바이오가스 발전은 이산화탄소에 비해 온실효과 영향력에 21배에 해당하는 메탄가스를 연료로 사용하여 환경부하를 저감시키고 에너지를 생산한다. 바이오가스에 포함된 $H_2S$는 연소 후 $SO_2$형태로 발생되는데 $SO_2$는 수분과 반응을 하게 되면 $H_2SO_4$등의 강한 산성을 띄는 물질로 생성되어 배관 및 발전기에 손상을 주고 저온부식현상을 유발하게 하며, 동물이나 인체에 노출되면 기관지 수축현상이 일어나 호흡기에 영향을 주는 질식성을 띄는 가스이다. 축산바이오가스에 포함된 $H_2S$의 함유량과 가스엔진의 연소 시 배출되는 $SO_2$ 배기가스 성분의 관련성을 검증하기 위해 60-65%의 $CH_4$와 30-35%의 $CO_2$ 성분의 바이오가스를 50kW급 발전기에서 사용하였고 연소 후 배출되는 가스 성분을 분석하였다.

  • PDF

하향류식 고정층 바이오매스 가스화기를 이용환 합성가스 생성특성 연구 (Syngas Production from Biomass Using a Downdraft Fixed-bed Gasifier)

  • 윤상준;최영찬;김용구;이재구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.594-597
    • /
    • 2007
  • 바이오매스를 이용한 분산형 발전 및 에너지화의 경우 기존의 연소법은 단순 열에너지의 이용과 스팀터빈을 이용하는 대규모 시설이 요구된다. 반면 가스화의 경우 가연성 합성가스 생성을 통하여 소규모 분산형 발전이 가능하며, 생성가스를 이용하여 다양한 응용이 가능하다. 기존 상향류식 가스화의 경우의 바이오매스 가스화시 목질계 내 리그닌 성분으로 인하여 다량의 타르가 발생하여 후단 처리 설비에 어려움이 있다. 본 연구에서는 하향류식 가스화 방법을 통하여 목질계 바이오매스의 가스화 특성을 알아보았다. 가스화기 하부로 배출되는 합성가스의 온도는 대략 1000$^{\cdot}C$까지 유지할 수 있었으며, 생성되는 합성가스의 발열량은 약 $1300kcal/Nm^3$의 수준으로 얻을 수 있었다. 또한 발생되는 타르는 $5{\sim}15ppm$ 정도로 기존 상향류식에 비해 매우 적은양의 타르가 발생함을 확인할 수 있었다.

  • PDF

하수처리장 바이오가스를 이용한 발전시 가스엔진의 고장원인 분석 (Analysis of cause of engine failure during power generation using biogas in sewage treatment plant)

  • 김길정;김래현
    • 에너지공학
    • /
    • 제25권4호
    • /
    • pp.13-29
    • /
    • 2016
  • 본 연구에서는 실제 난지 하수처리장에서 바이오가스를 연료로 사용하여 발전할 때, 가스엔진에서 발생하는 고장 사례에 대한 조사와 분석을 통해 바이오가스 플랜트의 주요 고장원인을 분석하고, 그 대책을 제시하였다. 바이오 가스엔진에 유입되는 바이오 가스 속의 황화수소와 수분 제거설비의 간헐적인 오작동으로 인한 수분이 바이오 가스엔진의 인터쿨러 부식을 초래하였다. 또한 바이오가스 속의 실록산이 이산화규소와 규산염 화합물을 형성하여 피스톤 표면 및 실린더라이너 내벽의 긁힘과 마모 등의 손상을 유발하였다. 연소실과 배기가스 설비에 부착된 물질들은 황화수소와 다른 불순물질이 결합한 것으로 분석되었다. 이러한 원인으로는 바이오 가스 속의 고함량(50ppm이상)의 황화수소가 탈황설비에 장기간 공급되었고, 탈황설비내 활성탄의 파과점 도달에 따른 제거효율 저하 때문에 황화수소가 엔진으로 유입됨으로써 발생한 것으로 사료된다. 또한, 황화수소는 흡착탑의 실록산 제거용 활성탄 기능을 저하시킴으로써 제거되지 않은 실록산 화합물이 엔진으로 유입되어 다양한 형태의 엔진고장을 유발한 것으로 판단된다. 따라서, 황화수소와 실록산, 수분은 바이오 가스엔진 고장의 주요 원인으로 볼 수 있으며, 이 중 황화수소는 고장을 일으키는 다른 물질과 반응하며, 전처리 공정에 중대한 영향을 미치는 물질로 볼 수 있다. 결과적으로, $H_2S$ 제거방법의 최적화가 안정적인 바이오 가스엔진 운영을 위한 필수적인 대책으로 사료된다.

바이오가스 활용과 품질기준 (Applications and technical standards for biogas)

  • 김승수
    • 유기물자원화
    • /
    • 제18권3호
    • /
    • pp.38-49
    • /
    • 2010
  • 유기성 폐기물의 혐기성발효공정에 의한 바이오가스 연구가 다양한 목적으로 활발하게 진행되고 있다. 혐기성공정 또는 매립지에서 생성되는 바이오가스의 주요 조성은 메탄, 이산화탄소와 미량의 황화수소와 암모니아로 구성되며, 생산지에서 불순물을 정화시킨 후 바로 사용하거나 혹은 파이프라인을 통해 천연가스처럼 사용할 수 있다. 생산된 바이오가스는 열과 스팀생산, 전기생산, 자동차용 연료 및 화학물질 생산 등에 사용되어질 수 있다. 바이오가스는 사용 용도에 따라 여러 나라들의 관련 규정들이 정비되고 있지만 아직까지 국제적으로 공인된 표준 규격은 없다. 본 논문에서는 세계 각국의 바이오가스 용도별 품질특성을 살펴보았다.

바이오가스 고질화와 초저온액화공정을 통한 액화바이오메탄 생산 (Biogas upgrading and Producing the Liquefied Bio-methane by Cryogenic Liquefaction Process)

  • 심동민;성현제;박성범;김낙주;장호명;이재영;이영민;이우철;오화수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.246.1-246.1
    • /
    • 2010
  • 본 연구는 바이오가스의 에너지효율성을 높이기 위한 연구로서 바이오가스 정제공정과 초저온액화공정을 통하여 액화바이오메탄을 생산하는 바이오가스 고질화기술개발 연구이다. 바이오가스 정제공정은 탈황, 제습, 흡착, 압축, $CO_2/CH_4$ 분리공정으로 구성하고, 초저온액화공정은 열교환기, $CO_2$ 제거설비, 질소냉매 공급공정으로 구성하여 혐기성소화조에서 발생하는 바이오가스($CH_4$ 농도: 60~65%, $H_2S$: 1,500~2,500ppm)를 $200Nm^3/hr$의 유량으로 인입시켜 액화바이오메탄을 생산하였다. 연구결과, 탈황공정에서는 가성소다 세정법을 이용하여 1,500~2,500ppm으로 인입되는 $H_2S$를 100ppm 이하로 제거한 후, 흡착법을 이용하여 $H_2S$를 완전히 제거하였다. 바이오가스에 포화된 수분은 냉각제습과 흡착제습공정을 통해 Dew point $-70{\sim}-90^{\circ}C$까지 제거하여 안정적으로 $CO_2/CH_4$ 분리공정에 인입시켰다. $CO_2/CH_4$ 분리공정은 흡착방식을 적용하여 $CH_4$ 순도가 95% 이상인 바이오메탄을 생산하였으며, 이때 메탄 회수율은 약 87%이였다. $CO_2$가 분리된 바이오메탄은 초저온액화공정을 이용하여 액화바이오메탄으로 전환시켰다. 이때 초저온액화공정은 Reverse Brayton cycle로 구성하였으며, 냉매로는 질소를 사용하였다. 액화바이오메탄의 생산은 바이오메탄을 등엔트로피과정인 단열팽창을 통하여 $-155{\sim}-159^{\circ}C$의 초저온으로 냉각되는 질소냉매와 열교환기에서 열교환시켜 이루어졌으며 그 생산량은 $3.46m^3$/day(1bar, $-161^{\circ}C$)이었다.

  • PDF

바이오가스 공급 확대의 경제적 파급효과 분석 (An Analysis on the Economic Impacts of the Bio-gas Supply Sector)

  • 백민지;김호영;유승훈
    • 에너지공학
    • /
    • 제23권2호
    • /
    • pp.74-82
    • /
    • 2014
  • 기후변화 문제에 대응한 온실가스 감축 방안 중 하나로 정부는 바이오가스의 공급 확대를 추진하고 있다. 이를 위한 정책수단의 일환으로 신재생연료혼합의무제(RFS)의 도입이 논의되고 있는데 여기에는 바이오가스도 포함된다. 이에 따라, 본 논문에서는 2011년에 발표된 투입산출표를 이용한 투입산출 분석을 통해 RFS 도입이 가져올 바이오가스 공급 확대의 경제적 파급효과를 분석하고자 한다. RFS의 도입 내용을 감안할 때 바이오가스 공급부문은 액화석유가스 공급부문 및 도시가스 공급부문으로 구성된다. 따라서 이들 2개 부문을 바이오가스 공급부문으로 정의한 후 바이오가스 공급 확대가 가져올 경제적 파급효과로 생산유발효과, 부가가치 유발효과, 취업유발효과를 분석한다. 추가적으로 바이오가스 공급부문의 공급차질로 인한 부정적 파급효과를 의미하는 공급지장효과 및 바이오가스 공급부문 제품가격 변동이 가져올 물가파급효과도 분석한다. 분석결과 바이오가스 공급부문에서의 1원의 투자 혹은 생산이 가져오는 생산유발효과 및 부가가치 유발효과는 각각 1.0539원 및 0.1998원이다. 아울러 10억원 투자 혹은 생산의 취업유발효과는 0.5279명, 바이오가스 공급부문의 공급지장효과는 1.6229원, 바이오가스 공급부문의 산출물 가격 10% 인상의 물가파급효과는 0.0183%로 분석되었다.