• 제목/요약/키워드: 바이오전극

검색결과 151건 처리시간 0.027초

전기화학 바이오센서의 전자전달 매개체로써의 탄소 나노튜브에 관한 연구 (Carbon nanotube as and electron transfer mediator in electrochemical biosensors)

  • 박은진;송민정;홍석인;민남기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1436-1437
    • /
    • 2006
  • 탄소 나노튜브는 기계적인 강도가 크고, 표면적이 넘으며 전기전도도가 우수할 뿐만 아니라 화학적으로도 안정하기 때문에 최근 여러분야에 적용하려는 연구가 활발히 진행되고 있는 나노물질이다. 특히 바이오센서에서 탄소 나노튜브는 작업 전극의 활성을 증대시키는 물질로써, 안정적인 효소 고정화에 기여하는 reservior로써 그리고 반응에서 생성된 전자를 전극에 효과적으로 전달하는 매개체로써 이용되고 있다. 본 연구에서는 다중벽 탄소 나노튜브(multi-walled carbon nanotube ; MWNT)를 화학처리하여 작용기를 유도한 후 효소와 반응시킨 용액으로 스크린 프린팅 방법으로 제작된 탄소전극의 표면을 개질하는 방법으로 바이오센서를 제작하였다. 이렇게 제작된 바이오센서를 탄소 나노튜브를 이용하지 않은 바이오 센서와 전기화학적으로 분석한 결과 감도가 약 3배정도 증가하는 결과를 얻을 수 있었다. 이것은 효소반응 시 발생된 전자가 나노튜브를 통해서 전극에 효과적으로 전달됨을 의미한다.

  • PDF

액체 내에 적용 가능한 바이오 플라즈마 소스 개발과 특성 연구

  • 임승주;민부기;오현주;이종용;강승언;최은하
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.495-495
    • /
    • 2013
  • 액체 내에 적용 가능한 바이오 플라즈마 소스를 제작하기 위해 텅스텐과 주사 바늘, 카테터 등의 여러 재료를 사용하여 시도를 해보았고 액체에서 방전이 일어날 수 있는 구조를 연구하였다. 전극 위에 절연체를 씌우고 그 위에 전극을 고정시켜 전압을 인가하여 전극 간에 표면방전을 통해서 플라즈마를 생성하는 방식을 사용하였다. 실험 장비는 AC 전압을 사용하였으며(12 kV, 22 kHz) 방전 전압과 방전 전류를 고전압 프로브(Tektronix P6015A)와 전류 프로브(P6021)를 사용하여 측정하였다. 모노크로미터를 이용하여 바이오 플라즈마 소스가 액체 속(수돗물, 증류수, 생리식염수)에서 방전 될 때 에미션 스펙트럼을 분석하여 산화질소(nitric oxide; NO), 과산화수소(hydrogen peroxide; H2O2), hydroxyl radical이 발생함을 확인하였다. 인체 내에서는 온도가 중요한 요소이기 때문에 액체에서 방전할 때 $40^{\circ}C$ 이하의 낮은 온도에서 이용이 가능하도록 연구하였다. 특히, 우리는 여러 종류의 액체(수돗물, 증류수, 생리식염수)에서의 방전 특성의 광학적 전기적 연구를 하였다.

  • PDF

Bosensor의 원리와 국내연구현황

  • 인권식;김봉원;손무정
    • 미생물과산업
    • /
    • 제16권1호
    • /
    • pp.40-48
    • /
    • 1990
  • 바이오센서의 기본구조는 크게 바탕전극(base electrode), 막(membrane)및 측정장치(transducer) 등의 세 부분으로 나눌 수 있다. 여기서는 바탕전극의 종류와 감응 메카니즘(mechanism), 바이오센서의 원리와 그 종류, 응용범위및 국내 연구 현황에 대하여 소개하고자 한다.

  • PDF

나노 탄소물질을 이용한 바이오센서 전극제조 기술 (Biosensor Electrode Manufacturing Technology Using Nano-carbon Materials)

  • 김지현;배태성;이영석
    • 공업화학
    • /
    • 제24권2호
    • /
    • pp.113-120
    • /
    • 2013
  • 최근 의료기술의 발달로 인한 인간 수명의 연장으로 삶의 질 향상에 대한 욕구가 증가되었고, 또한 건강에 대한 관심과 요구를 증가되고 있다. 따라서 질병을 예방하고, 신속하게 검진 받을 수 있는 바이오센서의 개발에 대한 연구도 또한 활발히 진행되고 있다. 이들 연구에서 나노 탄소물질은 우수한 전기적/기계적 물성을 가지고 있어 바이오센서전극제조에 적합한 것으로 알려져 있다. 본 총설에서는 바이오센서 전극 제조방법 및 응용과 더불어 최근 주목을 받고 있는 나노 탄소물질을 이용한 탄소전극 제조 방법에 초점을 맞추어 소개하고자 한다.

다공질 실리콘을 이용한 요소검출용 바이오 센서 제작 (Fabrication and Characterization of Porous Silicon-based Urea Sensor Syst)

  • 진준형;강철구;강문식;송민정;민남기;홍석인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.2003-2005
    • /
    • 2002
  • 바이오 마이크로 시스템 및 바이오 MEMS 분야, 특히 실리콘을 기질로 하는 바이오 센서 제작에서 반도체 공정 기술은 센서의 대량 생산과 초소형화를 위해서 반드시 필요한 기술이다. 그러나, 감지전극의 마이크로화에 따른 센서의 감도 및 안정성 저하 문제는 해결해야 할 과제이다. 최근, 다공질 실리콘이 갖는 대면적이 실리콘 기질과 생체 고분자 (예: 단백질, 핵산 등) 간의 결합력을 향상시킬 수 있음이 알려지면서, 바이오 센서 분야에서, 새로운 형태의 드랜스듀서 재료로서의 다공질 실리콘에 대한 논의가 활발히 전개되고 있으며 또한, ISFET (Ion-Selective Field-Effect Transistors) 와는 달리 다공질 실리콘 층은 저항이 크기 때문에 센서 제작 과정에서의 부가적인 절연막을 필요로 하지 않는다. 본 연구에서는, 백금을 증착한 다공질 실리콘 표면에 전도성 고분자로서 Polypyrrole (PPy) 필름과 생체 고분자 물질로서 Urease를 각각 전기화학적으로 흡착하였다. 다공질 실리콘 층의 형성을 위해 테플론 소재의 전기화학 전지에 불산 (49%), 에탄올 (95%), $H_2O$ 혼합 용액을 넣고 실리콘 웨이퍼에 일정시간 수 mA의 산화 전류를 흘려주었으며, 약 $200{\AA}$의 티타늄 박막과 $200{\AA}$의 백금 박막을 RF 스퍼터링하여 작업 전극을 제작하였고, 백금 박막 및 Ag를 기화 증착하여 제작한 Ag/AgCl 박막을 각각 상대 전극과 기준전극으로 하였다. 박막 전극의 표면 분석을 위해 SEM (Scanning Electron Microscopy), EDX (Energy Dispersive X-ray spectroscopy) 등을 이용하였다. 제작된 요소 센서로부터 요소 농도 범위 0.01 mmol/L ${\sim}$ 100 mmol/L에서 약 0.2 mA/decade의 감도를 얻었다.

  • PDF

금 나노입자/폴리(maleic anhydride) 그래프트 탄소나노튜브에 글루코스 옥시다아제 담지를 기반으로 한 글루코스 바이오센서 (A glucose biosensor based on deposition of glucose oxidase onto Au nanoparticles poly(maleic anhydride)-grafted multiwalled carbon nanotube electrode)

  • 박명화;손평수;장주환;최성호
    • 분석과학
    • /
    • 제23권2호
    • /
    • pp.165-171
    • /
    • 2010
  • 글루코스 옥시다아(GOx)제 고정화 바이오센서를 두 가지 방법으로 제조 하였다. 첫 번째 방법은 폴리(maleic anhydride) 그래프트 탄소나노튜브(PMAn-g-MWCNT) 전극에 감마선 조사법으로 제조 된 Au 나노입자를 물리적으로 흡착시킨 후, GOx을 고정화 시켜 바이오센서를 제조한 경우이고, 다른 하나는 PMAn-g-MWCNT 전극에서 Au 이온을 전기화학적으로 환원시켜 Au 나노입자를 코팅 시키고, 그 위에 GOx을 고정화 시켜 바이오센서를 제조 한 경우이두. 제조된 바이오센서에 대해 효율 평가를 수행 하였는데, 물리적 흡착법으로 제조된 전극의 경우 검출 범위는 $30\;{\mu}M\sim100\;{\mu}M$이었으며, 검출한계는 $15\;{\mu}M$이었다. 또한 ascorbic acid와 uric acid에 대한 검출한계는 7.6%이었다. 물리적으로 Au 나노입자가 흡착된 전극의 경우가 글루코스 측정에 매우 우수한 전극임을 확인 하였다.

폴리이온복합체를 이용하여 글루코스 산화효소를 고정화한 바이오전지용 효소전극 제조 (Preparation of Enzyme Electrodes for Biofuel Cells Based on the Immobilization of Glucose Oxidase in Polyion Complex)

  • 린 타이 미 그웬;이남;윤현희
    • 공업화학
    • /
    • 제24권1호
    • /
    • pp.99-103
    • /
    • 2013
  • 유리화탄소전극 위에 탄소나노튜브(CNT), 전하전달체(CTC), 글루코스 산화효소(GOx), 폴리이온복합체(PIC, poly-L-lysine hydrobromiderhk과 poly(sodium 4-styrenesulfonate) 혼합물)를 순차적으로 도포하여 글루코스/산소 바이오전지용 효소전극을 제조하였다. 또한, CNT, bilirubin oxidase (BOD), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 그리고 PIC 등의 층으로 제조한 전극을 바이오캐쏘드로 사용하여 바이오전지를 제조하였다. CNT와 CTC가 전극의 성능에 미치는 영향을 조사하였으며, 글루코스농도 5, 20, 200 mM에서 각각 3.6, 10.1, $46.5{\mu}W/cm^2$의 최대전력밀도를 나타내었으며, 본 연구에서 제시한 전극이 바이오전지 및 바이오센서의 개발에 활용될 수 있다는 것을 보여주었다.

흑염소 간-조직과 Ferrocene 매개체를 사용한 과산화수소정량 전류법 바이오센서 (Amperometric Biosensor for Hydrogen Peroxide Determination Based on Black Goat Liver-Tissue and Ferrocene Mediation)

  • 권효식;박인근;김양숙
    • 대한화학회지
    • /
    • 제48권5호
    • /
    • pp.491-498
    • /
    • 2004
  • 흑염소의 간-조직과 ferrocene을 탄소반죽 전극에 고정하여 과산화수소를 정량할 수 있는 전극을 만들었다. Ag/AgCl 전극에 대하여 $-0.3{\sim}+0.0\;V$의 전위 범위에서 전극의 감도를 관찰하였으며 전극의 감응시간은 12 s로 나타났다. 전극의 검출한계는 2.25${\times)10^{-6}M$ (S/N=3)이었으며,1.0${\times}10^{-2 }$M 과산화수소를 이용해 15회 반복 측정한 결과, 상대표준편차는 1.87%이었다. 또한, 방해물질의 영향도 없는 것으로 나타났다. 효소전극의 감도는 19일 사용 후 50%로 감소하였다.

바이오센서 응용을 위한 그래핀 전극 표면의 결함준위에 따른 전기화학적 특성 분석

  • 박민정;황숙현;임기홍;최현광;전민현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.386.2-386.2
    • /
    • 2014
  • 본 연구에서는 바이오 센서 응용을 위해 그래핀을 전극으로 제작하여 그래핀 표면 결함준위에 따른 센서의 민감도를 전기화학 실험을 통해 관찰하였다. 그래핀은 니켈/구리촉매를 이용한 저 진공 화학 기상 증착 장비(Low-Pressure Chemical Vapor Deposition; LP-CVD)와 Photo-lithography로 제작한 것과 탄소 산화물을 환원시켜 만든 환원-그래핀, 두 가지를 사용하였다. 전기화학 실험에서 그래핀 전극 및 Silver/Silver chloride (Ag/AgCl), Fluorine doped Tin Oxide (FTO)은 작업 전극 및 기준 전극, 상대 전극으로 각각 사용하였고, 반응용액은 potassium hexacyanoferrate (III)를 농도를 다르게 하여 사용하였다. 그래핀의 표면 상태, 층수, 결함 정도 등 구조적인 특성은 원자력현미경(Atomic Force Microscopy; AFM), 주사 전자 현미경(Secondary Electron Microscopy; SEM)과 Raman spectroscopy를 각각 이용하여 확인하였고, 그래핀의 결함준위에 따른 반응면적 및 센서 감도 의존성을 전류모드-원자력현미경(Current-Atomic Force Microscopy; I-AFM)과 전기화학 임피던스 분광법(Electrochemical Impedance Spectroscopy; EIS)를 통해 그래핀 전극의 성능을 분석하고, 그래핀 결함 준위에 따른 센서 감도 의존성은 순환전위 분광법 (Cyclic Voltammetry; CV)를 이용하여 관찰하였다. 또한 농도가 다른 반응용액은 센서의 민감도를 관찰하는데 사용하였다. 결과적으로 LP-CVD로 성장한 그래핀과 환원-그래핀의 결함준위에 따른 센서의 성능을 비교 분석한 결과와 반응용액 농도에 따른 센서의 민감도 결과는 그래핀 바이오센서에 대한 응용 및 상용화를 앞당기는데 기여할 것으로 예상한다.

  • PDF

바이오멤스기술을 이용한 세로토닌 검출용 바이오센서의 전기화학적 특성 분석 (Electrochemical Analysis of Biosensor using Bio-MEMS Technologies for the Detection of Serotonin)

  • 윤동화;송민정;김종훈;민남기;홍석인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1932-1934
    • /
    • 2003
  • 본 논문은 신경전달물질 중 우울증, 신부전증의 지표 물질인 세로토닌의 농도를 극미량의 시료를 사용하여 정량할 수 있는 방법을 개발하기 위해 초소형 효소 고정화 전극을 개발하였다. 전극은 실리콘 웨이퍼 상에 반도체 공정을 이용하여 마이크로 크기의 Pt 박막 전극을 제작하였고, 전기화학적 방법으로 pyrrole 단량체를 Pt 전극 상에 순환전압전류법을 이용하여 산화적으로 전기 중합하였다. 효소의 고정은 일정 전압을 인가한 시간대 전류법으로 고정화하였다. 제작된 전극은 시간대 전류법으로 세로토닌의 농도에 따른 감도를 측정하였다. 세로토닌의 농도 범위 $1.0{\mu}mol/L{\sim}10mmol/L$에서의 감도는 $7.0{\mu}$A/decade를 나타내었으며, 실험결과에 따라 전극의 표면에서 발생하는 전류는 세로토닌의 농도에 비례함을 알 수 있었다. 전극의 표면분석은 Scanning Electron Microscopy(SEM), Energy Dispersive X-ray Spectroscopy(EDX) 그리고 Auger Electron Spectroscopy(AES)를 이용하여 분석하였다.

  • PDF