• 제목/요약/키워드: 바이오메탄

검색결과 199건 처리시간 0.024초

바이오가스 고질화와 초저온액화공정을 통한 액화바이오메탄 생산 (Biogas upgrading and Producing the Liquefied Bio-methane by Cryogenic Liquefaction Process)

  • 심동민;성현제;박성범;김낙주;장호명;이재영;이영민;이우철;오화수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.246.1-246.1
    • /
    • 2010
  • 본 연구는 바이오가스의 에너지효율성을 높이기 위한 연구로서 바이오가스 정제공정과 초저온액화공정을 통하여 액화바이오메탄을 생산하는 바이오가스 고질화기술개발 연구이다. 바이오가스 정제공정은 탈황, 제습, 흡착, 압축, $CO_2/CH_4$ 분리공정으로 구성하고, 초저온액화공정은 열교환기, $CO_2$ 제거설비, 질소냉매 공급공정으로 구성하여 혐기성소화조에서 발생하는 바이오가스($CH_4$ 농도: 60~65%, $H_2S$: 1,500~2,500ppm)를 $200Nm^3/hr$의 유량으로 인입시켜 액화바이오메탄을 생산하였다. 연구결과, 탈황공정에서는 가성소다 세정법을 이용하여 1,500~2,500ppm으로 인입되는 $H_2S$를 100ppm 이하로 제거한 후, 흡착법을 이용하여 $H_2S$를 완전히 제거하였다. 바이오가스에 포화된 수분은 냉각제습과 흡착제습공정을 통해 Dew point $-70{\sim}-90^{\circ}C$까지 제거하여 안정적으로 $CO_2/CH_4$ 분리공정에 인입시켰다. $CO_2/CH_4$ 분리공정은 흡착방식을 적용하여 $CH_4$ 순도가 95% 이상인 바이오메탄을 생산하였으며, 이때 메탄 회수율은 약 87%이였다. $CO_2$가 분리된 바이오메탄은 초저온액화공정을 이용하여 액화바이오메탄으로 전환시켰다. 이때 초저온액화공정은 Reverse Brayton cycle로 구성하였으며, 냉매로는 질소를 사용하였다. 액화바이오메탄의 생산은 바이오메탄을 등엔트로피과정인 단열팽창을 통하여 $-155{\sim}-159^{\circ}C$의 초저온으로 냉각되는 질소냉매와 열교환기에서 열교환시켜 이루어졌으며 그 생산량은 $3.46m^3$/day(1bar, $-161^{\circ}C$)이었다.

  • PDF

반응표면분석을 이용한 바이오가스 고질화공정을 통한 바이오메탄 (Optimization of biomethane production by biogas upgrading process using response surface mothodolgy)

  • 박성범;성현제;심동민;김낙주
    • 에너지공학
    • /
    • 제23권2호
    • /
    • pp.62-73
    • /
    • 2014
  • 본 연구는 혐기성소화조에서 발생된 바이오가스로부터 바이오메탄을 생산하기 위한 고질화 공정의 운전조건을 최적화하기 위하여 반응표면 분석모델을 적용하였다. 반응표면 분석법의 하나인 Box-Behnken 설계법을 이용하였으며 바이오가스 고질화 공정의 메탄농도와 메탄회수율을 극대화하기 위한 수학적인 최적운전조건을 도출하였다. 도출된 반응표면모델의 적합성을 검증한 결과 각 모델의 p Value가 0.05 이하로서 유의성이 매우 높게 나타났으며, 결정계수($R^2$)는 각각 0.9788, 0.9710 이었다. 그리고 이산화탄소/메탄분리공정에서 메탄농도에 대해 운전압력이 가장 크게 영향을 미치고 다음으로 바이오메탄 생산량, PSA 회전밸브 속도의 순이다. 메탄회수율에 대해서는 PSA 회전밸브 속도가 가장 크게 영향을 미치고 있으며, 바이오메탄 생산량, 운전압력의 순으로 나타났다. 액체바이오 메탄 생산량이 $100Nm^3/hr$일 때의 최적 운전조건을 도출한 결과, 운전압력이 8.0bar 그리고 PSA 회전 밸브 속도가 31.55RPM일 때 바이오메탄의 메탄농도와 메탄회수율을 최대화할 수 있었고, 이때의 바이오메탄의 메탄농도는 97.13%이고, 메탄회수율은 75.89%이었다.

매립지의 메탄 배출 저감을 위한 생물공학기술 (Biotechnology for the Mitigation of Methane Emission from Landfills)

  • 조경숙;류희욱
    • 한국미생물·생명공학회지
    • /
    • 제37권4호
    • /
    • pp.293-305
    • /
    • 2009
  • 메탄은 온실효과가 이산화탄소 보다 20배 이상인 대표적인 non-$CO_2$ 온실가스이다. 매립지는 주요 인위적 메탄 발생원으로, 매립지의 메탄 발생량은 연간 35~73 Tg(tera gram)으로 추정된다. 바이오커버(개방형 시스템)과 바이오필터(폐쇄형 시스템)을 이용하는 생물학적 방법은 메탄을 회수하여 자원화하기에는 메탄 농도가 너무 낮거나 가스 포집정이 설치되어 있지 않는 노후화된 매립지나 소규모 매립지로부터 메탄 배출을 저감할 수 있는 유용한 방법이다. 메탄을 유일탄소원과 에너지원으로 활용하는 메탄산화세균은 이러한 생물학적 방법에 있어 메탄을 산화시켜 제거하는데 매우 중요한 역할을 담당한다. 토양, compost, 지렁이 분변토 등과 같은 다양한 충전재를 이용하여 실험실 규모의 바이오커버/바이오필터의 메탄산화효율에 관한 많은 연구가 진행되었다. 이 중에서 compost는 가장 많이 이용되고 있는 충전재이고, compost를 이용한 바이오커버/바이오필터의 메탄산화속도는 50에서 $700\;g-CH_4\;m^{-2}\;d^{-1}$로 보고되고 있다. 또한, 실제 매립지에 파일럿 규모의 바이오커버/바이오필터를 설치하여 메탄 배출 저감 효과에 관한 연구도 진행되고 있다. 매립지의 메탄 배출 저감은 탄소배출권 거래와 연관될 수 있으므로, 바이오커버/바이오필터에 의한 메탄 저감량을 정확하게 평가하는 것이 매우 중요하다. 그러므로, 매립지 현장에 설치된 바이오커버/바이오필터의 성능을 평가하는 방법은 표준화되어야 하며, 메탄 저감량을 정확하게 정량화할 수 있는 방법 개발이 필요하다.

메탄 바이오전환 기술의 현황과 전망 (Bioconversion of Methane: Current Technology and Prospect)

  • 황인엽;이은열
    • 공업화학전망
    • /
    • 제19권2호
    • /
    • pp.28-35
    • /
    • 2016
  • 천연가스, 셰일가스 및 바이오가스의 주성분인 메탄은 지구온난화 가스로, 감축대상인 동시에 차세대 탄소 자원으로 주목을 받고 있다. 기존의 화학적 메탄전환방법은 대규모 설비투자가 요구되는 규모의 경제가 적용되어 소규모 한계 가스전에는 활용이 어렵다. 이러한 문제점을 극복하기 위하여 최근에 생물학적 전환법이 대안으로 고려되고 있다. 메탄자화균은 메탄산화효소(methane monooxygenase)를 이용하여 상온 상압에서 메탄을 탄소원으로 사용하여 생장할 수 있다. 따라서 메탄자화균의 메탄 대사경로를 기반으로 대사공학을 활용하면 메탄으로부터의 다양한 종류의 고부가가치 산물 생산이 가능하다. 본고에서는 메탄자화균을 이용한 메탄의 바이오전환 기술의 현황 및 전망에 대하여 논의하였다.

메탄의 대기 배출량을 저감시키는 매립지 복토층의 메탄 산화능력에 관한 연구 (Methane Oxidizing Capacity of Landfill Cover Soils to Reduce Atmospheric Methane Emissions)

  • 박소영
    • 환경영향평가
    • /
    • 제13권4호
    • /
    • pp.187-196
    • /
    • 2004
  • 매립지에서 배출되는 메탄가스는 이산화탄소에 이어 두 번째로 많이 배출되는 지구온난화 가스이지만 열을 흡수하는 능력에 있어서는 이산화탄소 보다 25에서 35배 정도 더 크기 때문에 지구 온난화 현상에 대한 메탄가스의 영향은 중요하다고 할 수 있다. 매립지로부터 배출되는 메탄가스는 호기성 상태의 매립지 복토층을 통과 할 때 산화될 수 있으므로 매립지 복토층은 메탄가스의 배출을 저감시키는 바이오필터의 역할을 할 수 있다. 본 연구에서는 batch 실험을 통하여 매립지 복토층에서의 메탄산화속도에 대한 토양수분과 온도의 영향을 연구하였다. 최대 산화속도는 토양수분 15%(w/w), 배양온도 $35^{\circ}C$의 환경조건에서 $1.03{\mu}mol\;CH_4g^{-1}soil\;h^{-1}$으로 나타났다. 이러한 실험결과를 이용하여 토양수분과 온도를 함수로 하는 회귀모형을 개발하였다. 또한 전국에 4 군데 지역을 선발하여 각 지역의 토양수분과 온도 데이타를 수집하고 개발된 모형을 이용하여 각 지역에 위치하고 있는 매립장에서의 월 평균 메탄산화량을 예측하였다. 예측 결과 환경조건이 양호한 지역의 매립지 복토는 메탄의 배출량을 저감시킬 수 있는 효율적인 바이오필터의 효과를 가지지만 환경조건이 불리한 지역의 매립지 복토에서는 바이오필터의 효과가 크지 않는다고 할 수 있다.

해조류의 혐기성 발효를 이용한 메탄 생산 (Production of Methane from Anaerobic Fermentation of Marine Macro-algae)

  • 김정민;이영호;정성훈;이진태;조무환
    • 청정기술
    • /
    • 제16권1호
    • /
    • pp.51-58
    • /
    • 2010
  • 해조류를 바이오매스로 이용하는 혐기성 발효를 통해 메탄을 생성하는 연구를 수행하였다. 먼저 원소분석을 통한 다시마, 미역, 톳 등 세 종류의 바이오매스의 이론 메탄가스 전환량을 구한 결과, 분석한 세 종류의 해조류는 C 34 ~ 36%, H 5%, O 37 ~ 43%, N 2 ~ 4%, S 0.4 ~ 0.7%, ash 14 ~ 21%를 포함하고 있었으며, 이론적으로 56 ~ 60%의 메탄전환이 가능한 것으로 나타났다. 이는 g VS(고형분) 당 442 ~ 568 mL의 메탄가스를 생산할 수 있는 양이다. 생물학적메탄잠재력 (Biological Methane Potential, BMP) 시험을 통하여 실제 메탄가스를 측정한 결과, 다시마에서 최대 메탄생성수율 (52%)을 보였다. 이어서 회분식으로 메탄가스 생산에 영향을 미치는 여러 가지 인자들 (유기물 농도, pH, 염분, 입자크기, 그리고 시료전처리)에 대한 조사를 통해 최적의 메탄가스 생산조건을 구하였다. 전처리한 다시마 5 g VS/200 mL를 pH 8조건에서 염분 제거 없이 사용했을 때 이론치의 51%(197.1 mL/g VS)를 얻었고, 더욱이 습식멸균기로 해조류를 찐 경우 27% 증가한 268.5 mL/g VS 메탄가스를 생산할 수 있었다. 또한 연속반응기 (7 L 운영부피/10 L 반응기)를 이용하여 65일 간 운전한 결과 하루 최대 약 1.4 L의 메탄가스 (평균 메탄함량 70%)를 생산할 수 있었다.

매립지 메탄 저감을 위한 바이오커버의 현장 적용 평가 (Field Application of Biocovers in Landfills for Methane Mitigation)

  • 정혜경;윤정희;오경철;전준민;류희욱;조경숙
    • 한국미생물·생명공학회지
    • /
    • 제45권4호
    • /
    • pp.322-329
    • /
    • 2017
  • 본 연구에서는 생활 폐기물 매립지 현장에 파일럿 규모의 바이오커버(pilot-scale biocover, PBC) 2기를 설치하고, 240일 동안 메탄 제거 효율을 모니터링하였다. 또한, 바이오커버 충전 소재를 채취하여 혈청병에서 잠재 메탄 산화능을 평가하였다. 바이오커버로 유입되는 메탄 농도는 23.7-47.9%(평균 값 = 41.3%, 중간값 = 42.6%) 수준이었다. 토양, 지렁이 분변토 및 퇴비 혼합물(7:2:1, v/v)을 충전 소재로 구축한 PBC1의 메탄 제거 효율은 60.7-85.5%이었다. 토양, 지렁이 분변토, perlite 및 퇴비 혼합물(4:2:3:1, v/v)을 충전 소재로 구축한 PBC2의 표메탄 제거 효율은 29.2-78.5%이었다. 그러나, 바이오커버의 충전 소재 자체의 메탄 잠재 산화 능력이 우수함에도 불구하고(평균메탄산화속도 = $180-199{\mu}g\;CH_4{\cdot}g\;packing\;material^{-1}{\cdot}h^{-1}$), 충전 소재의 다짐현상과 채널링이 발생하면 PBC1과 PBC2의 메탄 제거 효율은 0-30%로 저하되었다. 한편, 바이오커버의 메탄 제거 효율은 계절(외부 기온)에 따른 유의적인 차이를 보이지 않았다. 본 연구로부터 도출된 결과는 향후 매립지 현장에 실규모의 메탄 저감용 바이오커버를 설계하고 운전 조건을 구축하는데 유용하게 활용 가능하다.

소화가스의 막 분리 정제에 의한 도시가스용 바이오메탄 생산 (Bio-methane production for city gas by membrane separation of digestion gas)

  • 최근희;조민석;최원영;천승규
    • 한국응용과학기술학회지
    • /
    • 제37권5호
    • /
    • pp.1106-1115
    • /
    • 2020
  • 막 분리 운전방식에 따른 음폐수 소화가스의 도시가스용 바이오메탄 생산연구를 상업용 시설을 대상으로 수행하였다. 연구결과 바이오메탄의 순도는 4SBR과 3SDR 모두 98.9%를 달성할 수 있었다. 소화가스 내 메탄 회수율은 4SBR 88.1%, 3SDR 79.4%이었고, 처리 소화가스량 대비 바이오메탄 생산율도 4SBR이 53.5%로 3SDR의 49.4%보다 높았다. 그러나 막 분리시설에 공급되는 가스 중 반송가스의 비율은 4SBR이 56.5%로 3SDR 보다 두 배가량 컸으며, 이로 인해 최대 처리량에 있어서는 3SDR이 양호한 결과를 보였다. 따라서 소화가스 200 N㎥/day 이하는 4SBR, 240 N㎥/day 이상에서는 3SDR이 경제성이 좋은 것으로 판단되었다. 공정 운전변수들의 평균값 대비 운전 값들의 상대편차는 전반적으로 4SBR이 컸으며, 또한 주 운전조절 수단인 바이오메탄 인출압력 대비 주요 지표들의 상관관계에 있어서는 3SDR가 보다 직접적인 관계를 보여주었다.

축산폐기물의 바이오가스화에 의한 에너지 이용 가능성 검토 (Study on the Biogas Production from Livestock Manure)

  • 이준표;박순철;이진석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.575-578
    • /
    • 2007
  • 축산폐기물중 바이오가스 생산량이 많을 것으로 여겨지는 돈분(슬러리 돈사의 경우 분과 뇨)과 우분을 대상으로 BMP 방법에 의하여 바이오가스 생산량을 알아보았다. 실험결과 메탄가스 생산량은 슬러리식 돈사 돈분뇨가 가장 많은 330-402ml/gVS, 다음으로 재래식 돈사 돈분이 316-349ml/gVS, 그리고 스크래퍼식 돈사 돈분은 244-281ml/gVS를 보여 에너지 이용측면에서 볼 때 슬러리식 돈사 돈분뇨를 우선적으로 바이오가스화하여 이용하는 방안을 고려해야할 것으로 판단되었다. 우분의 경우 137ml/gVS로 매우 적은 메탄가스 생산량을 보임으로써, 바이오가스화보다는 톼비화와 같은 다른 처리방법을 채택하는 것이 바람직할 것으로 판단되었다.

  • PDF

돈분뇨 처리수 유래 질소와 인 제거를 위한 식물정화법 활용과 바이오매스의 바이오메탄 잠재성 연구 (Application of Phytoremediation for Total Nitrogen and Total Phosphorus Removal from Treated Swine Wastewater and Bio-methane Potential of the Biomass)

  • 사티카;최홍림;렝가맨
    • 유기물자원화
    • /
    • 제23권4호
    • /
    • pp.21-31
    • /
    • 2015
  • 본 연구는 거대억새(Miscanthus sacchariflorus var Geode Uksae-1)와 갈대(Phragmites australis)를 활용하여 돈분뇨 처리수 유래 영양염류(질소 및 인) 제거를 정량적으로 분석하고 생산된 바이오매스의 총 에너지가와 바이오메탄 잠재성 분석을 목적으로 수행되었다. 식물들은 일반토양과 사질토 또는 일반토양, 사질토 및 바이오세라믹의 혼합 여재로 채워진 용기에서 다루어졌다. 사용된 돈분뇨 처리수의 총질소와 총인함량은 각각 222.78 mg/L 과 66.11 mg/L에 해당하였다. 총질소와 총인 모두 바이오세라믹 첨가구에서 높은 제거율을 보였다. 거대억새에서 총질소 제거율이 가장 높게 나타났다(96.14%). 하지만 식물체의 원소분석 결과 갈대의 질소함량이 거대억새보다 더 높게 나타나 갈대의 질소흡착력이 더 뛰어난 것으로 판단된다. 반면 가장 높은 총 인 제거율을 보인 처리구는 갈대로 98.12%의 값을 보였다. 식물체 셀룰로스 함량은 일반토양 처리구보다 바이오세라믹 처리구에서 약 3~6% 더 높게 나타나 바이오세라믹은 식물섬유 형성에 영향을 미치는 것으로 사료된다. 본 연구에서 생산된 바이오매스의 바이오메탄 잠재성 분석결과 약 $57.01{\sim}99.25L-CH_4/kg$ VS의 값을 보였다. 리그닌은 식물의 바이오매스 분해를 방해하는 요소로 일반토양-사질토 여재를 사용한 갈대 처리구에서 가장 높게 나타나 메탄 생산력이 떨어지는 것으로 판단된다.