• Title/Summary/Keyword: 바이러스단백질

Search Result 360, Processing Time 0.039 seconds

Role of Peptides in Antiviral (COVID-19) Therapy

  • Chelliah, Ramachandran;Daliri, Eric Banan-Mwine;Elahi, Fazle;Yeon, Su-Jung;Tyagi, Akanksha;Park, Chae Rin;Kim, Eun Ji;Jo, kyoung Hee;Oh, Deog-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.5
    • /
    • pp.363-375
    • /
    • 2021
  • Trends in the developing era to discover and design peptide-based treatments throughout an epidemic infection scenario such as COVID-19 could progress into a more efficient and low-cost therapeutic environment. However, the weakening of proteolysis is one downside of natural peptide drugs. But, peptidomimetics may help resolve this issue. In this review, peptide and peptide-based drug discovery were summarized to target one key entry mechanism of severe coronavirus pulmonary emboli syndrome (SARS-CoV-2), which encompasses the association of the host angiotensin-converting enzyme-2 (ACE2) receptor and viral spike (S) protein. Furthermore, the benefits of proteins, peptides and other possible actions that have been studied for COVID-19 through new peptide-based treatments are discussed in the review. Lastly, an overview of the peptide-based drug therapy environment is comprised of an evolutionary viewpoint, structural properties, operational thresholds, and an explanation of the therapeutic area.

Induction and Gene Manipulation of Chicken Oviduct Epithelial Cells

  • Seo, Hee-Won;Kim, Sun-Young;Shin, Sang-Su;Kim, Tae-Min;Lee, Young-Mok;Lee, Bo-Ram;Kim, Tae-Wan;Lim, Jeong-Mook;Han, Jae-Yong
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2006.11a
    • /
    • pp.80-81
    • /
    • 2006
  • 닭의 유전자 지도가 밝혀지고 그와 관련한 생물학적 연구들이 활발히 이루어지면서 닭을 생체 반응기나 질병 모델 동물로 이용하기 위한 연구가 많이 진행되고 있다. 이 중 닭을 생체 반응기로 이용하기 위해서는 많은 양의 단백질을 생산하는 난관에 대한 연구가 필수적이다. In vivo와 in vitro에서 난관 특이적 프로모터에 의한 외래 유전자의 발현에 대한 연구를 하였고 유전자를 전이하는 방법으로는 렌티 바이러스 시스템을 이용하였으며, 프로모터는 난관 특이적 프로모터인 오브알부민 프로모터 (5‘ 조절 부분의 1.4kb)와 RSV 프로모터를 이용하였다. 리포터 유전자로는 형광발현 단백질 (enhanced green fluorescence protein, EGFP)을 이용해서 마우스 배아 섬유아세포, 닭 배아 섬유아세포, 난관 상피 세포에서 발현을 유도해서 조직 특이적 발현 여부를 확인하였다. 그 결과 RSV 프로모터는 모든 세포에서 발현하였으나, 오브알부민 프로모터에 의한 리포터 유전자의 발현은 난관 상피 세포에서는 특이적으로 발현하였다. 이와 같은 연구는 산란계를 이용해서 난관으로부터 효율적인 생리 활성 물질을 생산하기 위한 가능성을 보여주었다.

  • PDF

An Interferon Resistance Induced by the Interaction between HCV NS5B and Host p48 (C형 간염 바이러스 NS5B 단백질과 숙주의 p48 단백질의 상호작용에 의한 인터페론 저항성의 유도)

  • Park, So-Yeon;Lee, Jong-Ho;Myung, Hee-Joon
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.353-359
    • /
    • 2008
  • Hepatitis C virus (HCV) is known as the causative agent of blood transmitted hepatitis. Two viral proteins, E2 and NS5A, are known to exert interferon resistance of HCV via PKR pathway. Here, we report a third protein, the RNA-dependent RNA polymerase (NS5B) of HCV, induced interferon resistance inhibiting p56 pathway. p56 was shown to interact with p48 subunit of eukaryotic initiation factor 3 (eIF3). This interaction inhibited formation of ternary complex in translation initiation. Using dual reporter assay system, we observed that the translation decreased when interferon alpha was added to the culture. But, in the presence of HCV NS5B, the translation partly recovered. NS5B and p48 subunit of eIF3 were shown to interact. This interaction seems to inhibit the interaction between p48 and p56. This is the first report that a virus exerts interferon resistance via p56 pathway.

RNA Binding Specificities of Double-Stranded RNA Binding Protein (RBF) as an Inhibitor of PRK Kinase (PKR인산화효소 억제인자인 이중선RNA결합단백질 (RBF)의 RNA결합특이성)

  • 박희성;최장원
    • Journal of Life Science
    • /
    • v.6 no.4
    • /
    • pp.234-240
    • /
    • 1996
  • A double-stranded RNA binding factor (RBF), characterized as an inhibitor of PKR kinase in our previous study, was evaluated for its RNA binding specificities by RNA gel electrophoretic mobility shift analysis and membrane filter binding assay, RBF displayed affinities for a broad range of RNAs including viral RNAs and synthetic RNAs consiting of stem and loop structures. GC-rich RNA stem helices as short as 11 bp are suggested to represent the minimal binding motif for RBF. RBF binding to all the natural RNAs tested was reversible by poly(I): poly(C) addition, but E. coli 5S RNA was inefficient.

  • PDF

Expression of SARS-3CL Protease in a Cell-Free Protein Synthesis System (무세포 단백질 합성법을 이용한 활성형 SARS-3CL protease의 발현)

  • Park, Sun-Joo;Kim, Yong-Tae
    • Journal of Life Science
    • /
    • v.22 no.4
    • /
    • pp.552-558
    • /
    • 2012
  • Severe acute respiratory syndrome (SARS) is a severe respiratory infectious disease caused by a novel human coronavirus, SARS-CoV. The 3CL protease is a key enzyme in the proteolytic processing of replicase polyprotein precursors, pp1a and pp1ab, which mediate all the functions required for viral genomic replication and transcription. Therefore, this enzyme is a target for the development of chemotherapeutic agents against SARS. A large quantity of active SARS-3CL protease is required for development of anti-SARS agents. Here we have constructed overexpression vector for the production of the SARS-3CL protease. The gene encoding SARS-3CL protease was amplified using polymerase chain reaction and cloned into the pET29a expression vector, resulting in pET29a/SARS-3CLP. Recombinant SARS-3CL protease was successfully synthesized by the dialysis mode of the cell-free protein expression system, and purified by three-step fast protein liquid chromatography using HighQ and MonoP column chromatographies and Sephacryl S-300 gel filtration. In addition, the produced SARS-3CL protease was found to be an active mature form. This study provides efficient methods not only for the development of anti-SARS materials from natural sources, but also for the study of basic properties of the SARS-3CL protease.

Use of the Synthetic Gene Encoding the Truncated Human Rotavirus VP8* Protein in Escherichia coli for Production of Vaccine Candidates or Development of Diagnostic Antibodies (합성 유전자를 이용하여 Escherichia coli에서 백신 후보의 생산 혹은 진단용 항체의 개발을 위한 인간 rotavirus VP8* 부분 단백질의 발현)

  • Kim, Sang-Rae;Lee, Bheong-Uk
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.478-482
    • /
    • 2018
  • Human rotavirus is a causative agent of acute diarrhea among children. The artificial gene encoding the truncated $VP8^*$ protein of human rotavirus A (serotype 1 strain WA) was synthesized according to the Escherichia coli codon preference. The synthetic $VP8^*$ gene also possessed the NdeI and HindIII restriction sites for the convenient in-frame cloning for translation and a 6-histidine tag at C-terminus for Ni+ affinity purification. Molecular weight of the truncated $VP8^*$ protein deduced from the nucleotide sequences of the artificial gene was a 19.7-kDa. This synthetic $VP8^*$ DNA fragment was inserted into the pT7-7 expression vector and transformed into E. coli BL21 (DE3). Transformants harboring the synthetic gene encoding the $VP8^*$ protein was induced by supplement of a final concentration of 0.05 mM ITPG at $20^{\circ}C$. Protein crude extract from the E. coli transformants was subjected to Western blotting with the mouse anti-rotavirus capsid antibody, showing ~20-kDa $VP8^*$ protein band. The truncated $VP8^*$ protein band was also observed by Western blotting using the rabbit polyclonal antibody serum made against the truncated $VP8^*$ protein. This study suggested that the synthetic gene could be used as an easy way to produce the antigenic vaccine candidate for control of virus-associated diseases or to develop antibodies for diagnostic purpose.

Identification of the Protein Function and Comparison of the Protein Expression Patterns of Wheat Addition Lines with Wild Rye Chromosomes (야생 호밀 염색체 첨가 밀 계통의 단백질 발현 양상 비교 분석)

  • Lee, Dae Han;Cho, Kun;Woo, Sun Hee;Cho, Seong-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.373-383
    • /
    • 2019
  • The objectives of this study were to compare the protein expression patterns and degrees and identify the protein function of disomic addition lines (DAs) in Leymus racemosus, in order to improve the quality of wheat. Upon SDS-PAGE, L. racemosus showed two major protein bands whereas Chinese Spring (CS) had four major protein bands of high molecular weight. The DA(s) generally showed a similar protein expression pattern to that of CS, because 42 chromosomes were from CS and two chromosomes were from L. racemosus. However, only the L.r[J] line showed two protein bands of between 15 and 20 kDa, like L. racemosus. Image analysis based on 2-DE revealed that L.r[F] had the most upregulated protein spots, whereas L.r[N] had the least upregulated protein spots. For L.r[I], the frequency of the downregulated protein spots was higher than that of the upregulated ones. Using MALDI-TOF MS, the protein function was identified for each protein spot on the 2-DE polyacrylamide gel. The protein spots were classified into 11 groups according to protein function. Among the 11 groups, most protein spots of the DA(s) were identified as proteins related to metabolism. Additionally, unique protein spots of the DA(s) were related to abiotic stressors such as cold and heat. Those proteins are useful for improving wheat quality with resistance against abiotic stressors.

Molecular Characterization and Expression Analysis of Clathrin-Associated Adaptor Protein 3-δ Subunit 2 (AP3S2) in Chicken

  • Oh, Jae-Don;Bigirwa, Godfrey;Lee, Seokhyun;Song, Ki-Duk
    • Korean Journal of Poultry Science
    • /
    • v.46 no.1
    • /
    • pp.31-37
    • /
    • 2019
  • A chicken clathrin-associated adaptor protein $3-{\delta}$ subunit 2 (AP3S2) is a subunit of AP3, which is involved in cargo protein trafficking to target membrane with clathrin-coated vesicles. AP3S2 may play a role in virus entry into host cells through clathrin-dependent endocytosis. AP3S2 is also known to participate in metabolic disease developments of progressions, such as liver fibrosis with hepatitis C virus infection and type 2 diabetes mellitus. Chicken AP3S2 (chAP3S2) gene was originally identified as one of the differentially expressed genes (DEGs) in chicken kidney which was fed with different calcium doses. This study aims to characterize the molecular characteristics, gene expression patterns, and transcriptional regulation of chAP3S2 in response to the stimulation of Toll-like receptor 3 (TLR3) to understand the involvement of chAP3S2 in metabolic disease in chicken. As a result, the structure prediction of chAP3S2 gene revealed that the gene is highly conserved among AP3S2 orthologs from other species. Evolutionarily, it was suggested that chAP3S2 is relatively closely related to zebrafish, and fairly far from mammal AP3S2. The transcriptional profile revealed that chAP3S2 gene was highly expressed in chicken lung and spleen tissues, and under the stimulation of poly (I:C), the chAP3S2 expression was down-regulated in DF-1 cells (P<0.05). However, the presence of the transcriptional inhibitors, BAY 11-7085 (Bay) as an inhibitor for nuclear factor ${\kappa}B$ ($NF{\kappa}B$) or Tanshinone IIA (Tan-II) as an inhibitor for activated protein 1 (AP-1), did not affect the expressional level of chAP3S2, suggesting that these transcription factors might be dispensable for TLR3 mediated repression. These results suggest that chAP3S2 gene may play a significant role against viral infection and be involved in TLR3 signaling pathway. Further study about the transcriptional regulation of chAP3S2 in TLR3 pathways and the mechanism of chAP3S2 upon virus entry shall be needed.

Comparative Analysis of Coat Protein Gene of Isolates of Cucumber mosaic virus Isolated from Pepper Plants in Two GMO Environmental Risk Assessment Fields (GM 격리포장 내 고추에서 분리한 Cucumber mosaic virus 분리주들의 외피단백질 유전자 비교)

  • Hong, Jin-Sung;Park, Ho-Seop;Ryu, Ki-Hyun;Choi, Jang-Kyung
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.165-169
    • /
    • 2009
  • Twelve Cucumber mosaic virus (CMV) isolates were isolated from genetically modified (GM) and non-GM Capsicum annuum in two GM fields, Namyangju and Anseong, and their properties were investigated in this study. Coat protein (CP) gene of the CMV isolates were synthesized by RT-PCR using genus-specific primers which designed to amplify a DNA fragment of 950 bp. Purified cDNA fragments were cloned into the pGEMT easy vector for sequence determination. Nucleotide sequences (internal 657 bp) of CMV isolates were compared with Fny-CMV CP sequences and there were no significant collection site specific sequence similarities found. When predicted amino acid sequences (219 amino acids) were compared with Fny-CMV CP amino acids sequences, there were 96.8% to 97.3% similarities found from Namyangju collections and 95.9% to 96.8% similarities from Anseong collections. The phylogenetic analysis with nucleotide sequences showed definite differences in CMVs which have been isolated from the two regions.

Studies on Mild Mutants of Tobacco Mosaic Virus II. Biochemical Properties of Ribonucleic Acid and Coat Protein (약독 담배모자이크바이러스 II. RNA 및 외피단백질의 특성)

  • Choi Jang Kyung;Park Won Mok
    • Korean Journal Plant Pathology
    • /
    • v.2 no.2
    • /
    • pp.121-128
    • /
    • 1986
  • The biochemical properties of ribonucleic acid (RNA) and coat protein of the mild tobacco mosaic virus (TMV) mutant, Tw 333 are described. The molecular weight of the RNA calculated from polyacrylamide gel electrophoresis was $2.03\times10^6$ daltons. The molar ratio of the bases of the RNA was 25.4 guanine, 29.2 adenine, 17.5 cytosine and 27.9 uracil in moles. The hyperchromicity on Tw 333-RNA by thermal denaturation was $25.1\%$, indicating Tm value of $47^{\circ}C$. The virus coat protein migrated as a single component in SDS-polyacrylamide gel electrophoresis and had a molecular weight of 17,500 daltons. A total of 158 amino acid residues are present in the protein. Separation of the tryptic peptides by electrophoresis and chromatography yielded ninhydrin-positive compounds. The biochemical properties of RNA and coat protein of the mild mutant we very similar to those of wild type of TMV-OM strain, but some difference between the strains were observe in the base composition, hyperchromicity, amino acid composition and tryptic peptide map.

  • PDF