• Title/Summary/Keyword: 바닥 성형

Search Result 56, Processing Time 0.023 seconds

Manufacturing artificial lightweight aggregates using coal bottom ash and clay (석탄 바닥재와 점토를 이용한 인공경량골재 제조)

  • Kim, Kang-Duk;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.277-282
    • /
    • 2007
  • The artificial lightweight aggregate (ALA) was manufactured using coal bottom ashes produced from a thermoelectric power plant with clay and, the sintering temperature and batch composition dependence upon physical properties of ALA were studied. The bottom ash (BA) had 13wt% coarse particle (>4.75mm) and showed very irregular shape so should be crushed to fine particles to be formed with clay by extrusion process. Also the bottom ash contained a many unburned carbon which generates the gas by oxidation and lighten a aggregate during a sintering process. Plastic index of green bodies decreased with increasing bottom ash content but the extrusion forming process was possible for the green body containing BA up to 40wt% whose plastic index and plastic limit were around 10 and 22 respectively. The ALA containing $30{\sim}40wt%$ BA sintered at $1100{\sim}1200^{\circ}C$ showed a volume specific density of $1.3{\sim}1.5$ and water absorption of $13{\sim}15%$ and could be appled for high-rise building and super-long bridge.

Plasticity of clay bodies containing bottom ashes from power plant (석탄 바닥재를 함유한 점토 소지의 가소성에 관한 연구)

  • Jeon, Hye-Jin;Kim, Yoo-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.5
    • /
    • pp.223-230
    • /
    • 2007
  • Plasticity of clay bodies containing bottom ashes(BA) and small portion of other wastes was investigated. Plasticity indices of clay bodies using Atterberg limits were measured. It was confirmed that the plasticity indices could be applicable in actual forming process by extrusion. The forming possible compositions were found by changing the contents of water, bottom ash, stone dust, and sewage sludge. The relationship between the plasticity and physical properties of the aggregate green body was also investigated. The compositions for extrusion forming can be expected by measured the plasticity indices and these results were confirmed by real extrusion process. There is also strong relationship between the plasticity indices and the property of aggregate green body.

Design of Bottom Shape and Forming Analysis of Hydrogen Pressure Vessel with Maximum Volume (최대 내용적을 갖는 수소압력용기의 형상설계 및 성형해석)

  • Park, Gun Young;Kwak, Hyo Seo;Lee, Kwang O;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.941-948
    • /
    • 2017
  • Recently, hydrogen energy has been in the spotlight as an alternative to diminishing fossil fuels and as a potential solution to environmental pollution. The development of hydrogen-fueled vehicles and the demands for improved fuel efficiencies have resulted in the need to increase the volume of the hydrogen pressure vessels. Pressure vessels having an elliptical bottom, as opposed to one that is hemispherical, allow for a greater capacity. However, there are insufficient studies on the feasibility of the forming process required for an elliptical bottom. In this study, the liner capacity is calculated according to the ratios of the major to the minor axes of the elliptical bottom part in a hydrogen pressure vessel. Structural safety is verified through finite element analyses, and the results are compared to the theoretical results. The feasibility of the proposed elliptical shape of the pressure vessel bottom, while filled to maximum capacity, is validated through forming analysis.

Flexural Characteristics of Model Composite Deck Fabricated with VARTM (진공성형 제작 모델 복합소재 바닥판의 실험적 휨 거동특성 분석)

  • Lee Sung-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.417-426
    • /
    • 2005
  • Recent days composite bridge dock is gaining attraction due to many advantages such as light weight, high strength, corrosion resistance, and high durability. In this study, composite deck models of hat, box and triangular section type wore fabricated with VARTM Process. For these models, three point flexural tests wore carried out both in strong and weak axis. The experimental results were compared with each other to determine efficient section profile. It has been demonstrated that composite sandwich deck has strong potentials to be used as bridge deck in the new construction and rehabilitation works.

Fabrication, Durability and Structural Characteristics of Composite Bridge Deck of Hollow Section (중공단면 복합소재 교량 바닥판의 제작성, 내구성 및 구조거동평가)

  • Lee Sung-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.427-434
    • /
    • 2005
  • In this study, to develop composite bridge deck of many advantages such as light weight, high strength, corrosion resistance and high durability, profile design, laminate design and finite element analysis were carried out. In the analysis, 5-girder single span bridge with composite deck was considered. Deflection serviceability, failure criteria and web buckling were evaluated. Composite deck of designed profile was fabricated with pultrusion process. The coupon tests were conducted for the fabricated deck and the results were described.

Comparative Study on the Flexural Characteristics of Composite Bridge Deck Fabricated with Filament Winding and Pultrusion (필라멘트 와인딩과 인발성헝 제작 복합소재 교량 바닥판의 휨 특성 비교분석)

  • Lee, Sung-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.191-200
    • /
    • 2005
  • To develop composite bridge deck, comparative study on the flexural characteristics of deck fabricated with filament winding and pultrusion was performed. In this study, composite deck of triangular shape was fabricated with filament winding process and flexural tests were conducted along with pultruded 'Duraspan' deck. Failure load, maximum deflection and strains were compared with each other. Also finite element analysis for filament winding deck was carried out and the results were compared with those from experiments.

Characteristics of Sulfur-Solidified Materials by the Physical Properties of Coal Bottom Ash (석탄 바닥재의 물리적 성질에 따른 유황 고형화 성형물의 특성)

  • Hong, Bumui;Choi, Changsik;Jang, Eunsuk;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.58-65
    • /
    • 2014
  • In this work, we constructed the sulfur-solidified materials using coal bottom ash from four thermal power stations in Korea and investigated their practical data for the production of industrial construction compounds. To manufacture the sulfur-solidified materials, we used a continuous mixer with the uniaxial screw-type. Also, coal bottom ash was used as a fine aggregate below 1.2 mm because of the operation characteristics for the continuous mixer. When the sulfur-solidified materials were produced with diverse sulfur concentrations (15, 20, 25, 30 wt%), compressive strength properties were analyzed. In addition, when the coal bottom ash was used with a high calcium oxide content, crack was found in the test product and pH of submerged liquid was above 12. These experimental results could be effectively applied to the recycling technology of coal bottom ash.

Longitudinal Behavior of Prestressed Steel-Box-Girder Bridge (프리스트레스를 도입한 강합성형 교량의 교축방향 거동)

  • Park, Nam Hoi;Kang, Young Jong;Lee, Man Seop;Go, Seok Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.321-329
    • /
    • 2003
  • To effectively use the cross section of concrete decks, analytical and experimental studies on prestressed steel-box-girder bridges were performed in this study. The method of applying prestress was determined in the analytical study and the longitudinal behavior of the prestressed steel-box-girder bridge was considered in the experimental study. The object model for these studies was a two-span continuous bridge. The method of applying prestress determined herein was divided into two parts: one is that apply prestress to the concrete deck at its intermediate support, and the other is that apply prestress to the lower flange of the steel-box-girder bridge at its end support. The prototype bridge for the experiment was simulated based on the rule of similitude and was fabricated according to construction steps to apply prestress effectively. From the results of the experimental study, it has demonstrated that the prestressed steel-box-girder bridge provides better performance than the general steel-box-girder bridge in view of the increase of the design live load, the reduction of the tensile stress of the concrete deck at intermediate support, and the reduction of the displacement.

Simplified Analytical Model for Flexural Response of Fiber Reinforced Plastic Decks (FRP 바닥판의 휨 해석모델 개발)

  • Kim, Young-Bin;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.3 s.17
    • /
    • pp.65-74
    • /
    • 2005
  • An analytical model was developed to investigate the flexural behavior of a pultruded fiber-reinforced plastic deck of rectangular unit module. The model is based on first-order shea. deformable plate theory (FSDT), and capable of predicting deflection of the deck of arbitrary laminate stacking sequences. To formulate tile problem, two-dimensional plate finite element method is employed. Numerical results are obtained for FRP decks under uniformly-distributed loading, addressing the effects of fiber angle and span-to-height ratio. It is found that the present analytical model is accurate and efficient for solving flexural behavior of FRP decks. Also, as the height of FRP deck plate is higher, the necessity of higher order Shear deformable plate theory(HSDT) is announced, not the FSDT in the plate analysis theory.

  • PDF

Flexural Test on Composite Deck Slab Produced with Extruded ECC Panel (압출성형 ECC 패널을 이용하여 제작된 복합바닥슬래브의 휨 거동)

  • Cho, Chang-Geun;Han, Byung-Chan;Lee, Jong-Han;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.695-702
    • /
    • 2010
  • This paper presents a reinforced concrete composite deck slab system newly developed using a high ductile ECC extrusion panel. In the construction practice, the cracking of reinforced concrete slab often becomes a problem especially in parking garages, underground structures, and buildings. The ECC panel manufactured by extrusion process as a precast product has not only a high-quality in control of cracking but also a merit in applying the construction of concrete slab because the use of ECC panel can realize a formless or half-precast construction with cast-in-place concrete. In the newly developed deck slab system, the ECC extrusion panel is located in the bottom of slab with the thickness of 10 mm, reinforcements are assembled and located on the ECC panel, and finally the topping concrete is placed in the field. In order to evaluate the newly developed slab system, experimental works by four point bending test are conducted to compare with the conventional reinforced concrete slab system. From experiment, the developed deck slab system using a ECC panel gives many improved performances both in control of bending cracking and in load-carrying capacities of slabs.