• Title/Summary/Keyword: 바닥복사난방

Search Result 48, Processing Time 0.026 seconds

The Effects of Hot Water Supply Temperature on Indoor Thermal Characteristics for Floor Radiant Heating System (바닥복사 난방시스템의 공급온수온도가 실내 열환경에 미치는 영향)

  • Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.13-19
    • /
    • 2018
  • The Effects of hot water supply temperature on indoor thermal characteristics for floor radiant heating system in residential apartment were researched by computer simulation. The parametric study on hot water supply temperatures with different outdoor air temperatures was done with regard to energy performance and control characteristics, respectively. As a result, the maximum overshoot of indoor air temperature and energy consumption were reduced by adjusting the hot water supply temperatures with outdoor air temperatures.

A Experimental Study on the Application of GRNN for On-Off Control in Floor Radiant Heating System (바닥복사 난방시스템의 개폐식 제어에 대한 GRNN 적용에 관한 실험적 연구)

  • Song, Jae-Yeob;Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.4
    • /
    • pp.16-23
    • /
    • 2020
  • In this study, the control characteristics and effects of control methods on heating performance and energy consumption for the hot water floor radiant heating control system of a residential apartment were research by experiment. As a control method, On-Off control and outdoor reset control methods with GRNN(General Regression Neural Network) and without GRNN are considered. Also, the control performances with regard to improvement of indoor thermal environment and reduction of energy consumption are compared, respectively. Experiment results show that the performance of the control method with GRNN is better than that of conventional on-off control method without GRNN in the responses of room set temperature and energy saving.

A Case Study on the Plumbing Pipe Burst of Floor Radiant Heating (바닥 복사난방 배관설비에서 배관파열 사례 연구)

  • Jung, Hong-Do;Shin, Youn-Han;Park, Chen-Kwan;Jeong, Hyo-Min;Chung, Han-Shik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.10
    • /
    • pp.745-749
    • /
    • 2012
  • Heating pipes burst was occurred in the apartment complex that was applied floor radiant heating system. There were two opinions for the cause of the bursted heating pipes that was the flaw during construction and defects in the product and also there were conflicting among them. Officials analyzed it in order to investigate the cause of the rupture. Tensile test results showed different tensile strength between the lower part of heating pipe and the upper part of heating pipes. The lower tensile strength is maintained while the top was not secured. The reason why rupture heating pipes is that flow velocity isn't secured and then the air get stagnant. Stagnant air makes hardening. It is caused rupturing. The proper flow rate was confirmed 0.166 m/sec after experiment. It isn't make stagnant air inside heating pipes.

The Study of Human Response for Floor Surface Temperature and Resident's Posture Change (바닥 복사 난방시 바닥온도와 거주자 자세 변화에 따른 인체 반응에 관한 연구)

  • Kim, Dong-Gyu;Kim, Se-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.12
    • /
    • pp.846-851
    • /
    • 2012
  • The radiant floor heating system is traditional heating system in korea. Radiant floor heating is small in vertical temperature difference, air stream and radiant heat distribution is uniform. And radiant floor heating system provide thermal comfort conditions to the a resident. This study was undertaken to evaluate the physiological-subjective responses of the resident's posture change such as sitting and standing. The experimental investigations were carried out in climate chamber, and subjects were 4 college-age students in good health. The physiological response was skin temperature and subjective response was undertaken survey of TSV and CSV. The results were summarized as follows; The comfortable temperature range of plantar surface was $35.1{\sim}38.9^{\circ}C$ and buttock surface was $37.8{\sim}39.3^{\circ}C$.

A Study on the Improvement of Indoor Thermal Performance of Floor Radiant Heating System Considering Valve Operation Characteristics (바닥복사 난방시스템의 밸브구동 특성을 고려한 실내 열환경 성능 개선 연구)

  • Song, Jae-Yeob;Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.4
    • /
    • pp.36-45
    • /
    • 2021
  • In this study, to improve the indoor thermal environment of the radiant floor heating system, a study was conducted on the temperature change characteristics and energy consumption according to the change of the indoor air set temperature, the supply hot water temperature and the outdoor temperature. As for the control method, the on/off control and the thermal difference proportional control method proposed through previous studies were applied. In addition, in consideration of field applicability, numerical analysis was performed for the case where the indoor air temperature sensor was affected by the wall temperature. As a result, it was found that the temperature difference proportional control method is more effective for thermal comfort and energy saving than on/off control.

A Study on the Individual Room Control of Radiant Floor Heating System in Apartment Buildings (공동주택에서 바닥복사 난방시스템의 실별 제어에 관한 연구)

  • 김오봉;이미경;김광우;여명석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.421-429
    • /
    • 2004
  • In Korea, the radiant heating system has been widely used as a residential heating method, which has been modernized to use hot water running into the tubes embedded in the floor structure. According to the recent improvement of living standard of residential buildings, the requirement of the thermal comfort and energy saving in heating system has been raised. Until now, the radiant floor heating system has been controlled by room thermostat installed in the living room, but for better thermal comfort, an individual room control method is adopted as an alternative. Therefore, it is necessary to evaluate the control performance between the current control method and the individual room control method. In this study, the control performance between the two systems is evaluated through the field experiment. And the control performances of room air temperature and energy performances are analyzed through the simulation using TRNSYS. Firstly, the simulations are performed in the various outdoor conditions and the flow rates and the simulation results are analyzed for the control performances. Also, to evaluate the energy performance, the simulations are performed under the operating conditions in which the set-point of the room air temperature is fixed or changed according to the schedule of occupancy, and the simulation results are analyzed between the two methods.

Energy Saving Potentials of Radiant Floor Heating Systems Based on Control Strategies (바닥 복사 난방 시스템의 제어전략에 따른 에너지 사용량 분석)

  • Lee, Joon-Woo;Park, Cheol-Soo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.109-114
    • /
    • 2009
  • The dominant heating system used in Korean residential apartment buildings is a hydronic radiant floor heating system, known as the Ondol system. The most common control strategy applied to this traditional hydronic radiant system is a simple on-off control that intermittently supplies "hot water of a fixed temperature" at a "constant flow rate" to each room. However, the current problems with the aforementioned control are as follows: (1) since the simple on-off control is usually based on a one point measured temperature (a signal from a thermostat installed in a living room) in each dwelling unit, heating energy use for unoccupied rooms as well as a difference in temperatures between spaces (master bedroom, living room, bedroom1, bedroom2) can occur occasionally. (2) the most widely used residential water splitter has static valves, and is thus not able to change the flow rate to each room depending on the space heating load. In other words, the ratio of flow rates to rooms is fixed after construction, resulting in over- or under-heating and an improper use of energy. The aim of this paper is therefore to investigate the differences in the system's performance between control strategies in terms of the flow rate control and sensor location. It is shown that energy savings of control strategies are strongly influenced by occupant schedule.

  • PDF

An Experimental Study on Difference of Thermal Sensation by Radiant Floor Heating (바닥난방 복사열에 의한 온열감 차이에 대한 실험연구)

  • Choi, Yoon-Jung;Shim, Hyun-Suk;Jeong, Youn-Hong
    • KIEAE Journal
    • /
    • v.7 no.5
    • /
    • pp.65-71
    • /
    • 2007
  • The purpose of this study was to analyze the difference of thermal sensation by radiant floor heating as ecological design element. The experimental investigations were carried out in climate chamber, and subjects were 34 college-age females in good health. The experimental variable was radiant heat by floor heating, and experimental controlled conditions were indoor temperature, relative humidity, and air velocity in climate chamber and clothing value and activity of subjects. The results are as follows. (1) Indoor temperature($21{\pm}0.5^{\circ}C$) in climate chamber were maintained as controlling. Clothing values of the subjects were controlled as average 0.73 clo. In the floor heating-off, globe temperature was average $23.2^{\circ}C$(22.4~24.1), but in the floor heating-on, globe temperature was average $24.8^{\circ}C$(23.0~25.5). (2) In the floor heating-off, thermal sensation rating was average -1.03(slightly cool), in the floor heating-on, thermal sensation rating was average +1.03(slightly warm). (3) There were the differences of thermal sensation by radiant floor heating although indoor temperatures were maintained in an equal state. (4) The thermal sensation rating was tending upward according as the globe temperature was getting higher.