• Title/Summary/Keyword: 바나듐 회수율

Search Result 23, Processing Time 0.02 seconds

Mineral Processing Characteristics of Titanium Ore Mineral from Myeon-San Layer in Domestic Taebaek Area (국내 태백지역 면산층 타이타늄 광석의 기초 선광 연구)

  • Yang-soo Kim;Fausto Moscoso-Pinto;Jun-hyung Seo;Kye-hong Cho;Jin-sang Cho;Seong-Ho Lee;Hyung-seok Kim
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.54-66
    • /
    • 2023
  • Titanium's importance as a mineral resource is increasing, but the Korean industry depends on imports. Ilmenite is the principal titanium ore. However, research and development from raw materials have not been investigated yet in detail. Hence, measures to secure a stable titanium supply chain are urgently needed. Accordingly, through beneficiation technology, we evaluated the possibility of technological application for the efficient recovery of valuable minerals. As a result of the experiments, we confirmed that mineral particles existed as fine particles due to weathering, making recovery through classification difficult. Consequently, applying beneficiation technologies, i.e., specific gravity separation, magnetic separation, and flotation, makes it possible to recover valuable minerals such as hematite and rutile. However, there are limitations in increasing the quality and yield of TiO2 due to the mineralogical characteristic of the hematite and rutile contained in titanium ore. Hametite is combined with rutile even at fine particles. Therefore, it is essential to develop mineral processing routes, to recover iron, vanadium, and rare earth elements as resources. On that account, we used grinding technology that improves group separation between constituent minerals and magnetic separation technology that utilizes the difference in magnetic sensitivity between fine mineral particles. The development of beneficiation technology that can secure the economic feasibility of valuable materials after reforming iron oxide and titanium oxide components is necessary.

Characteristics of Oil Shale as Unconventional Oil Resources (비재내형(非在來型) 원유(原油) 자원(資源)으로서의 오일셰일 특성(特性) 고찰(考察))

  • Na, Jeong-Geol;Chung, Soo-Hyun
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.62-67
    • /
    • 2008
  • Oil shale is a sedimentary rock that contains organic compounds called kerogen that are released as petroleum-like liquids by retorting. In order to evalute oil shale as alternative oil resources, the physical properties of oil shale samples from US and Russia were investigated and Fischer assays were carried out. Thermogravimetric analysis shows that thermal degradation of oil shale consisted of two stage processes, with hydrocarbon release from kerogen followed by $CO_2$ release by carbonate decomposition. Organic compounds in oil shale have an high hydrogen/carbon ratio, and therefore liquid hydrocarbons could be obtained easily. Shale oil yields from Russian and US oil shales by Fischer assay were 12.7% and 18.5%, respectively. The density and boiling point of shale oils are higher than that of Middle East crude oil, indicating that further upgrading processes are necessary for refinery. On the other hands, sulfur contents are relatively low, and the amounts of Vanadium and Nickel are extremely small in shale oil. It was found that paraffins were rich in US shale oil while main components of Russian shale oil were oxygenated hydrocarbons.

Solvent Extraction Separation of Re (VI) from Hydrochloric Acid Leaching Solution of Spent Super Alloy by Alamine 304-1 (폐 초내열합금 염산침출 용액으로부터 Alamine304-1을 이용한 레늄의 용매추출분리)

  • Ahn, Jong-gwan;Jung, Hee-Kyeoung;Jang, Jae-Young;Kim, Min-Seuk
    • Resources Recycling
    • /
    • v.24 no.5
    • /
    • pp.56-62
    • /
    • 2015
  • Solvent extraction experiments for the separation and recovery of Re from hydrochloric acid leaching solution of spent super alloy by Alamine 304-1 were carried out. The effects of some variables, such as the nature and concentration of the extractants, HCl concentration, and the presence of impurities were investigated. The synthetic solutions of Re were prepared by dissolving ammonium perrhenate (APR), Alamine304-1, Cyanex272 and $D_2EHPA$ were used solvent extractants distilled in kerosene. The extraction percentage of Re by Alamine304-1 was higher than the other extractants as Cyanex272 and $D_2EHPA$ and the percentage is about 99%. Only 99% of Re was extracted in the presence of Al, Co and V in HCl solution.