• Title/Summary/Keyword: 밀도확률

Search Result 674, Processing Time 0.038 seconds

Variation Analysis of Storm Surges in Masan Bay due to Typhoon Landing-1. Extreme Simulation Typhoon Scenario (상륙 태풍에 의한 마산만 폭풍해일 변동성 분석 - 1. 극치 모의 태풍 시나리오의 결정)

  • Han, Sungdae
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.4
    • /
    • pp.493-505
    • /
    • 2015
  • Based on the typhoon paths landed on the southern coast of Korea, the distribution of typhoon moving directions follow the Beta probability density function and that of pressure drops in typhoon eyes follow the Rayleigh probability density function. Consequently, the extreme typhoon simulation scenarios for six landing positions are determined as most probable one in moving direction and extreme one of Typhoon Maemi level in pressure drop. The variation of storm surges in Masan bay associated with simulated typhoon landing position is analyzed through the numerical experiments in the next paper as the second part.

Noisy Speech Enhancement Based on Complex Laplacian Probability Density Function (복소 라플라시안 확률 밀도 함수에 기반한 음성 향상 기법)

  • Park, Yun-Sik;Jo, Q-Haing;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.6
    • /
    • pp.111-117
    • /
    • 2007
  • This paper presents a novel approach to speech enhancement based on a complex Laplacian probability density function (pdf). With a use of goodness-of-fit (GOF) test we show that the complex Laplacian pdf is more suitable to describe the conventional Gaussian pdf. The likelihood ratio (LR) is applied to derive the speech absence probability in the speech enhancement algorithm. The performance of the proposed algorithm is evaluated by the objective test and yields better results compared with the conventional Gaussian pdf-based scheme.

Study of analytical probabilistic models for urban flood control detention facilities in Korea (도시 홍수 저감 저류시설 설계를 위한 해석적 확률모형 연구)

  • Lee, Moonyoung;Jeon, Seol;Kim, Si Yeon;An, Heejin;Jung, Kichul;Park, Daeryong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.298-298
    • /
    • 2021
  • 본 연구에서는 국내 6개 지역 서울, 강릉, 대전, 광주, 부산, 제주의 30년 치 시강우 자료에 해석적 확률모형(Analytical Probabilistic Models) 방법을 적용하여 도시 홍수 저감을 목적으로 하는 저류시설 설계를 위한 유출량 예측 정도를 지역별로 비교하고자 하였다. 강우 사상 분포의 해석적 확률모형을 적용하기 위해 무강우 시간을 결정하여 독립 호우를 결정하는데, 자기상관계수와 변동계수를 활용한 무강우 지속시간의 산정(IETD, Interevent Time Definition) 방법을 사용하였다. 해석적 확률모형인 유출량의 확률밀도함수(PDF, Probability Density Function)를 유도하기 위해서 불투수 지역과 투수 지역의 영향을 고려하여 유출계수를 적용하는 강우-유출 관계를 가지고 유출량을 정의하였다. 강우량, 강우 지속시간, 무강우시간과 같은 강우특성은 1변수 지수함수의 PDF를 따른다고 가정하였다. 확률모형 방법의 적합성을 판단하기 위해 결정된 IETD에 따라 각 지역별로 실제 강우 사상을 해석적 모델과 연속모의실험인 SWWM(Storm Water Management Model)에 적용하여 불투수율에 따른 유출량을 산정하였다. 각 방식으로 얻은 유출량 결과는 모든 지역에서 매우 유사하게 나타났고 결론적으로 우리나라에서 도시 홍수 저감을 위한 저류시설의 계획과 설계에 확률모형 방법이 적용 가능하다는 것을 확인할 수 있었다.

  • PDF

Performance Comparison between Neural Network Model and Statistical Model for Prediction of Damage Cost from Storm and Flood (신경망 모델과 확률 모델의 풍수해 예측성능 비교)

  • Choi, Seon-Hwa
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.271-278
    • /
    • 2011
  • Storm and flood such as torrential rains and major typhoons has often caused damages on a large scale in Korea and damages from storm and flood have been increasing by climate change and warming. Therefore, it is an essential work to maneuver preemptively against risks and damages from storm and flood by predicting the possibility and scale of the disaster. Generally the research on numerical model based on statistical methods, the KDF model of TCDIS developed by NIDP, for analyzing and predicting disaster risks and damages has been mainstreamed. In this paper, we introduced the model for prediction of damage cost from storm and flood by the neural network algorithm which outstandingly implements the pattern recognition. Also, we compared the performance of the neural network model with that of KDF model of TCDIS. We come to the conclusion that the robustness and accuracy of prediction of damage cost on TCDIS will increase by adapting the neural network model rather than the KDF model.

Reliability Analysis Using Parametric and Nonparametric Input Modeling Methods (모수적·비모수적 입력모델링 기법을 이용한 신뢰성 해석)

  • Kang, Young-Jin;Hong, Jimin;Lim, O-Kaung;Noh, Yoojeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.87-94
    • /
    • 2017
  • Reliability analysis(RA) and Reliability-based design optimization(RBDO) require statistical modeling of input random variables, which is parametrically or nonparametrically determined based on experimental data. For the parametric method, goodness-of-fit (GOF) test and model selection method are widely used, and a sequential statistical modeling method combining the merits of the two methods has been recently proposed. Kernel density estimation(KDE) is often used as a nonparametric method, and it well describes a distribution function when the number of data is small or a density function has multimodal distribution. Although accurate statistical models are needed to obtain accurate RA and RBDO results, accurate statistical modeling is difficult when the number of data is small. In this study, the accuracy of two statistical modeling methods, SSM and KDE, were compared according to the number of data. Through numerical examples, the RA results using the input models modeled by two methods were compared, and appropriate modeling method was proposed according to the number of data.

A Methodology to Formulate Stochastic Continuum Model from Discrete Fracture Network Model and Analysis of Compatibility between two Models (개별균열 연결망 모델에 근거한 추계적 연속체 모델의 구성기법과 두 모델간의 적합성 분석)

  • 장근무;이은용;박주완;김창락;박희영
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.156-166
    • /
    • 2001
  • A stochastic continuum(SC) modeling technique was developed to simulate the groundwater flow pathway in fractured rocks. This model was developed to overcome the disadvantageous points of discrete fracture network(DFN) modes which has the limitation of fracture numbers. Besides, SC model is able to perform probabilistic analysis and to simulate the conductive groundwater pathway as discrete fracture network model. The SC model was formulated based on the discrete fracture network(DFN) model. The spatial distribution of permeability in the stochastic continuum model was defined by the probability distribution and variogram functions defined from the permeabilities of subdivided smaller blocks of the DFN model. The analysis of groundwater travel time was performed to show the consistency between DFN and SC models by the numerical experiment. It was found that the stochastic continuum modes was an appropriate way to provide the probability density distribution of groundwater velocity which is required for the probabilistic safety assessment of a radioactive waste disposal facility.

  • PDF

Recursive Estimation of Euclidean Distance between Probabilities based on A Set of Random Symbols (랜덤 심볼열에 기반한 확률분포의 반복적 유클리드 거리 추정법)

  • Kim, Namyong
    • Journal of Internet Computing and Services
    • /
    • v.15 no.4
    • /
    • pp.119-124
    • /
    • 2014
  • Blind adaptive systems based on the Euclidean distance (ED) between the distribution function of the output samples and that of a set of random symbols generated at the receiver matching with the distribution function of the transmitted symbol points estimate the ED at each iteration time to examine its convergence state or its minimum ED value. The problem is that this ED estimation obtained by block?data processing requires a heavy calculation burden. In this paper, a recursive ED estimation method is proposed that reduces the computational complexity by way of utilizing the relationship between the current and previous states of the datablock. The relationship provides a ground that the currently estimated ED value can be used for the estimation of the next ED without the need for processing the whole new data block. From the simulation results the proposed recursive ED estimation shows the same estimation values as that of the conventional method, and in the aspect of computational burden, the proposed method requires only O(N) at each iteration time while the conventional block?processing method does $O(N^2)$.

Estimation of Frequency of Storm Surge Heights on the West and South Coasts of Korea Using Synthesized Typhoons (확률론적 합성태풍을 이용한 서남해안 빈도 해일고 산정)

  • Kim, HyeonJeong;Suh, SeungWon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.241-252
    • /
    • 2019
  • To choose appropriate countermeasures against potential coastal disaster damages caused by a storm surge, it is necessary to estimate the frequency of storm surge heights estimation. As the coastal populations size in the past was small, the tropical cyclone risk model (TCRM) was used to generate 176,689 synthetic typhoons. In simulation, historical paths and central pressures were incorporated as a probability density function. Moreover, to consider the typhoon characteristics that resurfaced or decayed after landfall on the southeast coast of China, incorporated the shift angle of the historical typhoon as a function of the probability density function and applied it as a damping parameter. Thus, the passing rate of typhoons moving from the southeast coast of China to the south coast has improved. The characteristics of the typhoon were analyzed from the historical typhoon information using correlations between the central pressure, maximum wind speed ($V_{max}$) and the maximum wind speed radius ($R_{max}$); it was then applied to synthetic typhoons. The storm surges were calculated using the ADCIRC model, considering both tidal and synthetic typhoons using automated Perl script. The storm surges caused by the probabilistic synthetic typhoons appear similar to the recorded storm surges, therefore this proposed scheme can be applied to the storm surge simulations. Based on these results, extreme values were calculated using the Generalized Extreme Value (GEV) method, and as a result, the 100-year return period storm surge was found to be satisfactory compared with the calculated empirical simulation value. The method proposed in this study can be applied to estimate the frequency of storm surges in coastal areas.