유압시스템은 1795년 J. Bramah가 물을 작동유체로 사용한 Press를 개발해 사용한 이래 2세기 이상 인간생활의 다양한 분야에 이용되어 왔다. 초기 유압시스템은 쉽게 구할 수 있고, 저장이 용이한 물을 작동유체로 사용하였다. 그러나 물은 부식성, 낮은 점성계수로 인한 저 윤활성과 많은 누설량, 그리고 저온에서의 동결 등과 같은 문제점을 가졌다. 당시에는 물에 대한 부식성이 없는 재료나 물의 누설을 막을 수 있을 만큼의 가공기술이 부족하였으므로 이러한 물의 문제점을 해결하기 위해 1906년 Wiliams와 Janney가 물 대신 기름을 작동유체로 사용하기 시작했다.(중략)
본 논문에서는 10-dB 감쇠기 및 상용 패키지 된 MMIC 능동소자를 이용하여 구성된 증폭기, 2가지의 온-웨이퍼(on-wafer)형 DUT(Device-Under Test)를 구성하고, 이들의 잡음파라미터를 8-port 회로망을 이용하여 추출하는 방법을 제시하였다. 제작된 10-dB 감쇠기의 경우 수동소자이기 때문에, 이것의 S-파라미터를 측정하여 얻을 경우, 이것의 잡음파라미터를 알 수 있고, 또한 증폭기의 경우 이것의 잡음파라미터가 datasheet에 있다. 따라서 제안한 방법을 이용한 잡음파라미터 측정 결과에 대한 평가를 용이하게 할 수 있다. 기존 저자들에 의하여 발표된 6-포트회로망을 확장한 8-포트회로망을 이용한 잡음파라미터 측정은 사용된 8-포트회로망의 S-파라미터를 필요로 하는데, 동축형 DUT에 국한된다. 온-웨이퍼 프로브가 8-포트회로망에 삽입될 경우, 8-포트회로망의 S-파라미터 측정은 이종 형태의 커넥터를 갖는 8-포트회로망이 된다. 본 논문에서는 회로망 분석기(Network analyzer)의 Smart-cal 기능을 이용하여 8-포트회로망의 S-파라미터를 추출하였다. 측정된 잡음파라미터는 최소잡음지수, $NF_{min}$ 경우, 예상된 결과에 대하여 약 ${\pm}0.2dB$의 오차를 보인다. 다른 잡음파라미터는 주파수에 따라 예상된 결과와 근접하게 일치하는 결과를 보여주고 있다.
본 논문에서는 Wavelet을 이용한 위장 영상의 질환 부위 특징을 추출하여 질환 부위 패턴을 인식할 수 있는 알고리즘을 제안하였다. 전처리 과정으로서 위장 영상이 형태정보는 입력 영상을 DWT(Discrete wavelet transform)에 의해 4레벨 DWT 계수 행렬을 구하고 계수 행렬의 특징에 따라 저주파 계수 행렬로부터 저주파 특징 파라미터 32개, 수평 고주파 계수 행렬로부터 수평 고주파 특징 파라미터 16개, 수직 고주파 계수 행렬로부터 수직 고주파 특징 파라미터 16개, 그리고, 대각 고주파 계수 행렬로부터 대각 고주파 특징 파라미터 32개 등 모두 96개의 특징 파라미터를 추출한 후 각각의 특징 파라미터를 최대 값+0.5로 최소 값을 -0.5로 정규화 하여 신경회로망의 입력 벡터로 사용하였다. 위장 영상 패턴 인식을 위한 신경회로망은 교사 학습을 요구하는 다층 구조의 오차 역전파(Error back propagation)알고리즘으로 하였고 구조적 특성을 이용하여 입력층, 중간층, 출력층의 계층 구조로 설계하였다. 설계된 신경회로망의 학습은 학습계수를 0.2로 모우멘텀을 0.6으로 설정하여 출력층 최대오차가 0.01보다 작을 때까지 수행하였으며 약 8000회 정도 학습한 결과 설정값 보다 작은 결과를 얻었고 질환의 종류나 위치, 크기에 관계없이 100%의 인식률을 얻었다.
본 논문에서는 웨이브렛 변환에서 구해진 파라미터와 신경회로망을 이용하여 후두의 양성종양과 정상상태를 구분하는 실험을 행하였다. 식별 파라미터로는 웨이브렛변환으로부터 도출된 ECS 파라미터와 jitter, shimmer를 이용하였으며 신경회로망은 한 개의 은닉층을 갖는 다층구조 신경망을 이용하였다. 신경망의 입력으로는 세가지 파라미터의 조합을 두 개 또는 세 개를 입력하여 각각의 경우의 식별율을 조사하였다. 실험결과 75%에서 93%에 이르는 식별율을 얻었다.
한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
/
pp.388-391
/
1998
jitter, shimmer 및 켑스트럼 방식의 음원분석에 의한 파라미터를 이용하여 장애음성을 진단, 식별하는 방법을 제안한다. 먼저 통계적 처리결과르 바탕으로 식별에 유효한 파라미터들을 선택하고 이들 파라미터들을 이용하여 최종 진단한다. 식별방법으로는 신경회로망을 이용한다. 입력파라미터로는 jitter, shimmer, HNRR을 사용한다. 신경회로망은 1 은닉층을 갖는 3- layer 신경회로망을 사용한다. 실험결과 효과적으로 정상음성과 장애음성의구분이 가능해졌다.
논문에서는 신경회로망을 이용하여 소형 무인항공기의 횡/방향 운동 파라미터를 추정하고 기존 파라미터 추정기법인 퓨리에변환을 이용한 추정기법(FTR)과 후처리 기법인 최대공산법(MLE)의 추정 결과와 비교하여 신경회로망 기법을 이용한 파라미터 추정 결과의 신뢰성과 가능성을 확인하였다. 또한 파라미터 추정 결과를 이용하여 선형시스템을 구성하고 비행체의 특성을 확인하였으며, 선형 시뮬레이션을 통하여 추정된 파라미터의 타당성을 검증하였다.
적외선 이미지 센서용으로 사용되는 마이크로 볼로미터 센서는 process variation으의 인하여 모든 볼로미터 센서의 셀이 정확한 저항값을 갖지 못하여 입력신호에 왜곡을 가져 온다. 본 논문에서는 적외선 이미지 센서용 CMOS 검출회로를 설계하는 데 있어, 이러한 볼로미터 셀 어레이의 고정패턴잡음(Fixed Pattern hoise)을 최소화하는 방법에 대해 연구하였다. 기존의 단일 입력 방식 검출회로는 볼로미터 셀어레이의 고정패턴잡음을 보정하기 위하여 추가적인 보정 회로를 필요로 하였다. 이러한 문제점을 해결하기 위해서 본 논문에서는 차동 입력 방식 검출회로를 제안하였으며, 이를 적용하여 출력을 살펴본 결과 추가적인 보정회로 없이 20%의 노이즈 감쇠효과를 얻을 수 있다. 연구 결과를 바탕으로 32${\times}$32 크기를 갖는 셀어레이의 볼로미터를 구성하여 전체 칩을 설계하였으며 컴퓨터 시물레이션을 통해 결과를 분석하였다.
CMOS 트랜지스터의 등가회로모델 파라미터 $C_{gs}$ 의 예측방법이 CMOS 트랜지스의 반전층내의 유동전하량 계산과 전하유도 특성에 의해 제안되었다. 이 $C_{gs}$ 파라미터는 MOS 트랜지스터의 RF대역의 차단주파수를 결정하고 또한 입력과 출력을 커플링 시키는 중요한 파라미터이다. 이 제안된 방법은 등가회로 모델에서 파라미터 값을 예측하고 파라미터 값을 추출하는 소프트웨어 개발에 기여할 것이다.
음성인식 기술은 크게 음성인식과 화자인식 기술의 두 가지로 분류된다. 현재는 음성인식 기술이 널리 연구되고 있지만 점차 화자인식 기술의 중요성이 대두되고 있다. 본 논문에서는 화자인식 기술의 한 가지 분류로 임의 화자를 식별하기 위한 화자식별 기술을 연구 대상으로 하고 있으며, 신경회로망을 이용한 화자식별 시스템의 특징 추출 방법을 제시하고 그에 따른 성능을 비교하고 있다. 식별 단계에서 26명의 78개의 음성 샘플을 신경회로망의 역전파 알고리듬을 이용하여 학습하고, 테스트용으로 한 화자의 음성샘플이 사용되어 식별된다. 신경회로망의 입력 변수는 특징 파라미터로 선형예측계수, Mel-주파수 켑스트럼계수와 웨이블릿을 이용한 켑스트럼 계수를 사용하였다. 그 결과로써 화자식별 시스템의 신경회로망 모델2의 입력으로 혼합된 특징 파라미터를 사용한 경우가 다른 파라미터들을 사용한 경우와 비교하여 8.46~21.53%의 차를 가지고 가장 좋은 성능을 나타내었다.
잡음 파라미터에 대한 정보는 저잡음 증폭기 설계에 있어 필수 불가결한 요소이다. 과거 잡음 파라미터는 임피던스 튜너와 잡음지수 측정기(Noise Figure Analyzer: NFA)를 사용 측정되어 왔다. 최근 저자들은 잡음 파라미터는 기계적으로 구동되는 임피던스 튜너 없이 8-포트 회로망 방법을 이용하여 측정될 수 있음을 보였다. 그러나 8-포트 회로망을 이용한 측정방법은 여전히 잡음원(noise source)을 이용하고, 측정의 복잡도를 증가시키는 면이 있다. 본 논문에서는 잡음원을 이용하지 않고, 잡음 파라미터를 측정할 수 있는 새로운 6-포트 회로망 방법을 제안한다. 6-포트 회로망 방법에 의해 이론적으로 알려진 잡음 파라미터를 갖고 있는 10-dB 감쇠기에 대해 측정하였으며, 측정된 잡음 파라미터 결과는 기존 8-포트 회로망 방법과 비교하였으며, 비교결과 8-포트 회로망 방법과 유사한 정확도를 갖는 것을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.