• Title/Summary/Keyword: 미앤더

Search Result 74, Processing Time 0.023 seconds

A CPW Antenna with Three Folded Lines for Mobile Communication (3개의 폴디드 라인을 갖는 이동통신용 CPW 안테나)

  • Shin, Ho-Sub;Choi, In-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.900-902
    • /
    • 2013
  • In this paper, we propose the CPW antenna with three folded lines for miniaturization. This antenna is consisted of a meander-line on the middle position for LTE band and two folded lines. As widths of three lines are gradually changed to broaden bandwidth, antenna is designed.

  • PDF

Design of the Open-Loop Combined Meandered-Line 1-Layer Radiator for Diversity Antennas with Size-Reduction and Improved Isolation (다이버시티 안테나의 소형화와 격리도 향상을 위한 미앤더 선로와 개방형 루프가 결합된 방사구조의 설계)

  • Mok, Se-Gyoon;Kahng, Sung-Tek;Kim, Yong-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.110-116
    • /
    • 2012
  • This paper proposes a new diversity antenna which is the base of MIMO, tunable and reconfigurable antennas. The antenna has a small size and high inter-antenna isolation resulting from the compact radiating element comprising a meandered line and an open-loop combined in one limited uniplanar space and a modified T-shaped decoupling structure, respectively. In a WiMAX band, the radiating element and the entire antenna are $0.092{\lambda}$ and $0.2216{\lambda}$ in size, which shows effective size-reduction and the gain and efficiency of the proposed antenna attached to the ground of a handheld device are 3.7dBi and 56% acceptable to the industrial standard.

Macro-Micro Reconfigurable Antenna for Multi Mode & Multi Band(MMMB) Communication Systems (다중 모드 다중 대역(MMMB) 통신 환경을 위한 매크로-마이크로 주파수 재구성 안테나)

  • Yeom, In-Su;Choi, Jung-Han;Jung, Young-Bae;Kim, Dong-Ho;Jung, Chang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1031-1041
    • /
    • 2009
  • A small microstrip monopole antenna for macro-micro frequency tuning over multiple bands is presented. The meander-shape antenna is fabricated on a conventional printed circuit board(FR-4, $\varepsilon_r=4.4$ and tan $\delta=0.02$). The antenna operates over WiBro(2.3~2.4 GHz) and WLAN a/b(2.4~2.5 GHz/5.15~5.35 GHz) service bands with an essentially constant antenna gain within each service band. Two diodes, a PIN diode and a varactor, are embedded into the antenna for frequency reconfiguration. The PIN diode is used for frequency switching(macro-tuning) between 2 GHz and 5 GHz bands while the varactor is used for frequency tuning(micro-tuning) within the service bands, 2.3~2.5 GHz and 5.15~5.35 GHz. Unwanted resonances between the two frequency bands(2 GHz and 5 GHz) are suppressed by filling up the gaps between the meander lines. The antenna gain is essentially constant and higher than 2 dBi within each service band. The measured performance of the proposed antenna system suggests the macro-micro frequency tuning techniques be useful in reconfigurable wireless communication systems.

Dual-band RFID Tag Antenna Applicable for RF Power Harvester System (RF 에너지 충전 시스템 기능을 위한 이중대역 RFID 태그 안테나)

  • Mun, Byeonggwi;Rhee, Changyong;Kim, Jae-Sik;Cha, Junghoon;Lee, Byungje
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.5
    • /
    • pp.46-51
    • /
    • 2013
  • In this paper, a dual-band antenna is proposed for the RF power harvester system as well as RFID tag. The proposed antenna operates as the passive and active RFID tag antenna in the UHF and microwave band, respectively. In addition, to charge the battery of an active RFID tag in the microwave band, it harvest the RF signal for tagging from the passive RFID tag antenna in the UHF band. The proposed antenna operates in the UHF band (917~923.5 MHz) and microwave band (2.4~2.45 GHz). In order to obtain the dual-band operation, the dipole structure and meander parasitic elements are proposed as the ${\lambda}/2$ and $1{\lambda}$ dipole antenna, respectively. The radiating dipole structure in the microwave band acts as the coupled feed for the meander parasitic elements in the UHF band. The impedance bandwidth (VSWR < 2) of the proposed antenna covers 917~923.5 MHz (UHF band) and 2.4~2.45 GHz (Microwave band). Measured total efficiencies are over 45 % in the UHF band and over 70 % in the microwave band. Peak gains are over 0.18 dBi and 2.8 dBi in the UHF and microwave band with an omni-directional radiation pattern, respectively.

Design of X-band Broadband Twist Reflector Using Hybrid Particle Swarm Optimization (Hybrid Particle Swarm Optimization 기법을 적용한 X-대역 광대역 편파 변환기 설계)

  • Hwang, Keum-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.4
    • /
    • pp.390-395
    • /
    • 2009
  • Design and optimization of a broadband meander-line twist reflector was performed for X-band application. Based on the equivalent transmission line model, the polarization twist performance was evaluated. Genetic analysis, particles swarm, and hybrid swarm optimizations were employed to obtain the optimized geometrical parameters. The optimized design exhibits low cross-polarization level below - 25 dB between 8.45 and 11.38 GHz. The polarization twist loss was below 0.2 dB. Comparison between computed and simulated results was also discussed.

A Small RFID Tag Antenna with Bandwidth-Enhanced Characteristic (대역폭 확장 특성을 갖는 소형 RFID 태그 안테나)

  • Lee Woo-Sung;Chang Ki-Hun;Yoon Young-Joong;Lee Byoung-Moo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.6 s.109
    • /
    • pp.511-518
    • /
    • 2006
  • In this paper, a small RFID tag antenna in UHF band which has bandwidth-enhanced characteristic is proposed. The shape of the proposed antenna is a meander antenna to have size-reduced characteristic, and it consists of two radiators which make dual resonance in adjacent frequency to enhance bandwidth. By adjusting length and location of each radiator, the proposed antenna can make dual resonance at arbitrary location on the Smith chart, which is able to make impedance matching with RFID tag chip in wide frequency range. And it is apparent that the proposed antenna can have bandwidth-enhanced characteristic according to the simulated and measured results.

Miniaturization Design of Tag Antenna for RFID System in 910 MHz band (910 MHz 대역 RFID용 태그 안테나의 소형화 설계)

  • Park, Gun-Do;Min, Kyeong-Sik
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.363-368
    • /
    • 2008
  • This paper presents a miniaturization design technique of radio frequency identification (RFID) tag antenna operated in 910 MHz band. Miniaturization structure design for a tag antenna is performed by structure application of the folded dipole and meander line. In order to realize the maximum power transmission, imaginary part of a chip impedance and a tag antenna impedance is matched by complex conjugate number. The optimized tag antenna size is $50\;nm\;{\times}\;40\;nm\;{\times}\;1.6\;nm$ and its size is reduced about 62 % comparison with antenna size of reference [4]. The measured results of fabricated tag antenna are confirmed the reasonable agreement with prediction. The read range of the tag antenna with chip observed about 5 m.

Planar Frequency-Reconfigurable Monopole Antenna Design (가변 주파수 특성을 갖는 평면형 모노폴 안테나 설계)

  • Kim, Youngkyu;Lim, Joingsik;Han, Sang-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1121-1127
    • /
    • 2014
  • In this paper, a planar frequency reconfigurable antenna is proposed with variable capacitors. The proposed one is designed with a planar monopole, and varies resonant frequencies by variable capacitive loading of a varactor diode. The equivalent circuit and electromagnetic(EM) simulation are utilized for the analysis at the variable characteristic design of the antenna, and the same radiation performance. The implemented frequency variable monopole antenna has been verified by comparing prototypes with designed capacitors and ones with biased varactor diodes. The proposed antenna has presented the resonant frequency variations from 2.25 GHz to 2.42 GHz.

Design Flexible T-DMB Antenna with Common Mode Stub (Common Mode Stub를 이용한 Flexible T-DMB 안테나 구현)

  • Lee, Seon-Hyeon;Kim, Ho-Jin;Lee, Sang-Seok;Lee, Young-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.6
    • /
    • pp.605-612
    • /
    • 2011
  • In this paper, we designed detachable T-DMB receiver antenna on the windshield of the car. Designed antenna is composed of only copper and feeders. To escape completely from driver's sight, it exists edging of windshield. Proposed antenna by considering body of properties and characteristics of the antenna input impedance have T-DMB frequency band(174~216 MHz). Proposed flexible antenna with Common Mode Stub is satisfied characteristics less than -5 dB antenna input return loss regardless of installation position on windshield.

A Subminiature Antenna for Bluetooth Applications (블루투스용 초소형 안테나)

  • Park, Myoung-Shil;Chun, Ren;Bang, Jai-Hoon;Ahn, Bierng-Chearl
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.4
    • /
    • pp.119-125
    • /
    • 2007
  • In this paper, a miniaturized PCB-integrated antenna is proposed for bluetooth applications. The proposed antenna is a modified form of the printed inverted F antenna where the size reduction is achieved by employing the meander strip for the resonant length part of the radiator. The antenna dimension is optimized using the commercial electromagnetic software MWSTM. The designed antenna is fabricated by the standard photo-etching technique and its performance is measured. The fabricated antenna shows a bandwidth of 125MHz centered at 2.45GHz and a gail of -0.23dBi. The size of the proposed antenna is $9.65mm{\times}5.95mm$ corresponding to the 55 percent of the area of the existing printed inverted F antenna.

  • PDF